Cargando…

Fabrication of Sub-Micron Polymer Waveguides through Two-Photon Polymerization in Polydimethylsiloxane

Flexible ultra-compact low-loss optical waveguides play a vital role in the development of soft photonics. The search for suitable materials and innovative fabrication techniques to achieve low loss long polymer optical waveguides and interconnects has proven to be challenging. In this paper, we dem...

Descripción completa

Detalles Bibliográficos
Autores principales: Panusa, Giulia, Pu, Ye, Wang, Jieping, Moser, Christophe, Psaltis, Demetri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692651/
https://www.ncbi.nlm.nih.gov/pubmed/33114700
http://dx.doi.org/10.3390/polym12112485
Descripción
Sumario:Flexible ultra-compact low-loss optical waveguides play a vital role in the development of soft photonics. The search for suitable materials and innovative fabrication techniques to achieve low loss long polymer optical waveguides and interconnects has proven to be challenging. In this paper, we demonstrate the fabrication of submicron optical waveguides in polydimethylsiloxane (PDMS) using divinylbenzene (DVB) as the photopolymerizable monomer through two-photon polymerization (2PP). We show that the commercial oxime ester photoinitiator Irgacure OXE02 is suitable for triggering the DVB photopolymerization, resulting in a stable and controllable fabrication process for the fabrication of defect-free, 5-cm long waveguides. We further explore a multi-track fabrication strategy to enlarge the waveguide core size up to ~3 μm for better light confinement and reduced cross-talk. In these waveguides, we measured a refractive index contrast on the order of 0.005 and a transmission loss of 0.1 dB/cm at 710 nm wavelength.