Cargando…
Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands
The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain i...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692729/ https://www.ncbi.nlm.nih.gov/pubmed/33143226 http://dx.doi.org/10.3390/nano10112171 |
_version_ | 1783614579994001408 |
---|---|
author | Lee, Woosuk Lee, Changmin Kim, Boram Choi, Yonghyeok Chae, Heeyeop |
author_facet | Lee, Woosuk Lee, Changmin Kim, Boram Choi, Yonghyeok Chae, Heeyeop |
author_sort | Lee, Woosuk |
collection | PubMed |
description | The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain in alkanethiols for the synthesis of the small InP core. The reactive alkanethiol with a short hydrocarbon chain forms the ZnS shell rapidly and prevents the growth of the InP core, thus reducing the emission wavelength. In addition, the length of the hydrocarbon chain in the fatty acid was varied to reduce the nucleation kinetics of the core. The fatty acid with a long hydrocarbon chain exhibited a long emission wavelength as a result of the rapid nucleation and growth, due to the insufficient In–P–Zn complex by the steric effect. Blue-emissive InP/GaP/ZnS QDs were synthesized with hexanethiol and lauryl acid, exhibiting a photoluminescence (PL) peak of 485 nm with a full width at half-maximum of 52 nm and a photoluminescence quantum yield of 45%. The all-solution processed quantum dot light-emitting diodes were fabricated by employing the aforementioned blue-emissive QDs as an emitting layer, and the resulting device exhibited a peak luminance of 1045 cd/m(2), a current efficiency of 3.6 cd/A, and an external quantum efficiency of 1.0%. |
format | Online Article Text |
id | pubmed-7692729 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76927292020-11-28 Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands Lee, Woosuk Lee, Changmin Kim, Boram Choi, Yonghyeok Chae, Heeyeop Nanomaterials (Basel) Article The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain in alkanethiols for the synthesis of the small InP core. The reactive alkanethiol with a short hydrocarbon chain forms the ZnS shell rapidly and prevents the growth of the InP core, thus reducing the emission wavelength. In addition, the length of the hydrocarbon chain in the fatty acid was varied to reduce the nucleation kinetics of the core. The fatty acid with a long hydrocarbon chain exhibited a long emission wavelength as a result of the rapid nucleation and growth, due to the insufficient In–P–Zn complex by the steric effect. Blue-emissive InP/GaP/ZnS QDs were synthesized with hexanethiol and lauryl acid, exhibiting a photoluminescence (PL) peak of 485 nm with a full width at half-maximum of 52 nm and a photoluminescence quantum yield of 45%. The all-solution processed quantum dot light-emitting diodes were fabricated by employing the aforementioned blue-emissive QDs as an emitting layer, and the resulting device exhibited a peak luminance of 1045 cd/m(2), a current efficiency of 3.6 cd/A, and an external quantum efficiency of 1.0%. MDPI 2020-10-30 /pmc/articles/PMC7692729/ /pubmed/33143226 http://dx.doi.org/10.3390/nano10112171 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Woosuk Lee, Changmin Kim, Boram Choi, Yonghyeok Chae, Heeyeop Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands |
title | Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands |
title_full | Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands |
title_fullStr | Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands |
title_full_unstemmed | Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands |
title_short | Synthesis of Blue-Emissive InP/GaP/ZnS Quantum Dots via Controlling the Reaction Kinetics of Shell Growth and Length of Capping Ligands |
title_sort | synthesis of blue-emissive inp/gap/zns quantum dots via controlling the reaction kinetics of shell growth and length of capping ligands |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692729/ https://www.ncbi.nlm.nih.gov/pubmed/33143226 http://dx.doi.org/10.3390/nano10112171 |
work_keys_str_mv | AT leewoosuk synthesisofblueemissiveinpgapznsquantumdotsviacontrollingthereactionkineticsofshellgrowthandlengthofcappingligands AT leechangmin synthesisofblueemissiveinpgapznsquantumdotsviacontrollingthereactionkineticsofshellgrowthandlengthofcappingligands AT kimboram synthesisofblueemissiveinpgapznsquantumdotsviacontrollingthereactionkineticsofshellgrowthandlengthofcappingligands AT choiyonghyeok synthesisofblueemissiveinpgapznsquantumdotsviacontrollingthereactionkineticsofshellgrowthandlengthofcappingligands AT chaeheeyeop synthesisofblueemissiveinpgapznsquantumdotsviacontrollingthereactionkineticsofshellgrowthandlengthofcappingligands |