Cargando…
One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds
In recent years, microfluidic paper-based analytical devices (µPADs) have been developed because they are simple, inexpensive and power-free for low-cost chemical, biological and environmental detection. Moreover, paper is lightweight; easy to stack, store and transport; biodegradable; biocompatible...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692775/ https://www.ncbi.nlm.nih.gov/pubmed/33120953 http://dx.doi.org/10.3390/polym12112493 |
Sumario: | In recent years, microfluidic paper-based analytical devices (µPADs) have been developed because they are simple, inexpensive and power-free for low-cost chemical, biological and environmental detection. Moreover, paper is lightweight; easy to stack, store and transport; biodegradable; biocompatible; good for colorimetric tests; flammable for easy disposal of used paper-based diagnostic devices by incineration; and can be chemically modified. Different methods have been demonstrated to fabricate µPADs such as solid wax printing, craft cutting, photolithography, etc. In this study, one-step hot microembossing was proposed and demonstrated to fabricate µPADs. The processing parameters like embossing temperature, pressure and time were systematically investigated. It was found that, at 55 °C embossing temperature, the embossing pressure ranging from 10 to 14 MPa could be applied and the embossing time was only 5 s. This led to the overall processing time for fabrication of µPADs within 10 s. Glucose detection was conducted using the µPADs as fabricated, and a linear relationship was obtained between 5 and 50 mM. |
---|