Cargando…
Coupled Metabolic Cycles Allow Out‐of‐Equilibrium Autopoietic Vesicle Replication
We report chemically fuelled out‐of‐equilibrium self‐replicating vesicles based on surfactant formation. We studied the vesicles’ autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692917/ https://www.ncbi.nlm.nih.gov/pubmed/32706135 http://dx.doi.org/10.1002/anie.202007302 |
Sumario: | We report chemically fuelled out‐of‐equilibrium self‐replicating vesicles based on surfactant formation. We studied the vesicles’ autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemically fuelled self‐replicating micelles, our vesicular system was too stable to surfactant degradation to be maintained out of equilibrium. The introduction of a catalyst, which introduces a second catalytic cycle into the metabolic network, was used to close the first cycle. This shows how coupled catalytic cycles can create a metabolic network that allows the creation and perseverance of fuel‐driven, out‐of‐equilibrium self‐replicating vesicles. |
---|