Cargando…
Controlled Drug Release from Biodegradable Polymer Matrix Loaded in Microcontainers Using Hot Punching
Microcontainers are reservoir-based advanced drug delivery systems (DDS) that have proven to increase the bioavailibity of the small-molecule drugs, targeting of biomolecules, protection of vaccines and improved treatment of Pseudomonas aeruginosa. However, high-throughput loading of these micron-si...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692970/ https://www.ncbi.nlm.nih.gov/pubmed/33153058 http://dx.doi.org/10.3390/pharmaceutics12111050 |
Sumario: | Microcontainers are reservoir-based advanced drug delivery systems (DDS) that have proven to increase the bioavailibity of the small-molecule drugs, targeting of biomolecules, protection of vaccines and improved treatment of Pseudomonas aeruginosa. However, high-throughput loading of these micron-sized devices with drug has been challenging. Hot punching is a new technique that is a fast, simple and single-step process where the microdevices are themselves used as mold to punch biocompatible and biodegradable drug-polymer films, thereby loading the containers. Here, we investigate the effect of hot punching on the drug distribution as well as drug release from the loaded drug-polymer matrices. Zero-order sustained drug release is observed for the model drug Furosemide embedded in biodegradable polymer, Poly-ε-caprolactone, which is attributed to the unique spatial distribution of Furosemide during the loading process. |
---|