Cargando…

DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review

BACKGROUND: DNA damage is one of the main factors responsible for photoageing and is predominantly attributed to ultraviolet irradiation (UV‐R). Photoprotection by conventional sunscreens is exclusively prophylactic, and of no value, once DNA damage has occurred. As a result, the demand for DNA repa...

Descripción completa

Detalles Bibliográficos
Autores principales: Luze, Hanna, Nischwitz, Sebastian Philipp, Zalaudek, Iris, Müllegger, Robert, Kamolz, Lars Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693079/
https://www.ncbi.nlm.nih.gov/pubmed/32772409
http://dx.doi.org/10.1111/phpp.12597
_version_ 1783614661564825600
author Luze, Hanna
Nischwitz, Sebastian Philipp
Zalaudek, Iris
Müllegger, Robert
Kamolz, Lars Peter
author_facet Luze, Hanna
Nischwitz, Sebastian Philipp
Zalaudek, Iris
Müllegger, Robert
Kamolz, Lars Peter
author_sort Luze, Hanna
collection PubMed
description BACKGROUND: DNA damage is one of the main factors responsible for photoageing and is predominantly attributed to ultraviolet irradiation (UV‐R). Photoprotection by conventional sunscreens is exclusively prophylactic, and of no value, once DNA damage has occurred. As a result, the demand for DNA repair mechanisms inhibiting, reversing or delaying the pathologic events in UV‐exposed skin has sparked research on anti‐photoageing and strategies to improve the effect of conventional sunscreens. This review provides an overview of recent developments in DNA repair enzymes used in sunscreens and their impact on photoageing. METHODS: A systematic review of the literature, up to March 2019, was conducted using the electronic databases, PubMed and Web of Science. Quality assessment was carried out using the Newcastle‐Ottawa scale (NOS) to ensure inclusion of adequate quality studies only (NOS > 5). RESULTS: Out of the 352 publications, 52 were considered relevant to the key question and included in the present review. Two major enzymes were found to play a major role in DNA damage repair in sunscreens: photolyase and T4 endonuclease V. These enzymes are capable of identifying and removing UV‐R‐induced dimeric photoproducts. Clinical studies revealed that sunscreens with liposome‐encapsulated types of photolyase and/or T4 endonuclease V can enhance these repair mechanisms. CONCLUSION: There is a lack of randomized controlled trials demonstrating the efficacy of DNA repair enzymes on photoageing, or a superiority of sunscreens with DNA repair enzymes compared to conventional sunscreens. Further studies are mandatory to further reveal pathogenic factors of photoageing and possible therapeutic strategies against it.
format Online
Article
Text
id pubmed-7693079
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-76930792020-12-08 DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review Luze, Hanna Nischwitz, Sebastian Philipp Zalaudek, Iris Müllegger, Robert Kamolz, Lars Peter Photodermatol Photoimmunol Photomed Review Articles BACKGROUND: DNA damage is one of the main factors responsible for photoageing and is predominantly attributed to ultraviolet irradiation (UV‐R). Photoprotection by conventional sunscreens is exclusively prophylactic, and of no value, once DNA damage has occurred. As a result, the demand for DNA repair mechanisms inhibiting, reversing or delaying the pathologic events in UV‐exposed skin has sparked research on anti‐photoageing and strategies to improve the effect of conventional sunscreens. This review provides an overview of recent developments in DNA repair enzymes used in sunscreens and their impact on photoageing. METHODS: A systematic review of the literature, up to March 2019, was conducted using the electronic databases, PubMed and Web of Science. Quality assessment was carried out using the Newcastle‐Ottawa scale (NOS) to ensure inclusion of adequate quality studies only (NOS > 5). RESULTS: Out of the 352 publications, 52 were considered relevant to the key question and included in the present review. Two major enzymes were found to play a major role in DNA damage repair in sunscreens: photolyase and T4 endonuclease V. These enzymes are capable of identifying and removing UV‐R‐induced dimeric photoproducts. Clinical studies revealed that sunscreens with liposome‐encapsulated types of photolyase and/or T4 endonuclease V can enhance these repair mechanisms. CONCLUSION: There is a lack of randomized controlled trials demonstrating the efficacy of DNA repair enzymes on photoageing, or a superiority of sunscreens with DNA repair enzymes compared to conventional sunscreens. Further studies are mandatory to further reveal pathogenic factors of photoageing and possible therapeutic strategies against it. John Wiley and Sons Inc. 2020-08-27 2020-11 /pmc/articles/PMC7693079/ /pubmed/32772409 http://dx.doi.org/10.1111/phpp.12597 Text en © 2020 The Authors. Photodermatology, Photoimmunology & Photomedicine published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Articles
Luze, Hanna
Nischwitz, Sebastian Philipp
Zalaudek, Iris
Müllegger, Robert
Kamolz, Lars Peter
DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review
title DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review
title_full DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review
title_fullStr DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review
title_full_unstemmed DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review
title_short DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review
title_sort dna repair enzymes in sunscreens and their impact on photoageing—a systematic review
topic Review Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693079/
https://www.ncbi.nlm.nih.gov/pubmed/32772409
http://dx.doi.org/10.1111/phpp.12597
work_keys_str_mv AT luzehanna dnarepairenzymesinsunscreensandtheirimpactonphotoageingasystematicreview
AT nischwitzsebastianphilipp dnarepairenzymesinsunscreensandtheirimpactonphotoageingasystematicreview
AT zalaudekiris dnarepairenzymesinsunscreensandtheirimpactonphotoageingasystematicreview
AT mulleggerrobert dnarepairenzymesinsunscreensandtheirimpactonphotoageingasystematicreview
AT kamolzlarspeter dnarepairenzymesinsunscreensandtheirimpactonphotoageingasystematicreview