Cargando…

Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation

To test the effect of the moment of bentonite addition, co-addition of tannins, and bentonite type on the differential affinity of pathogenesis-related (PR) proteins towards bentonite during grape must fermentation, three separate experiments were set up. PR proteins in the obtained wines were analy...

Descripción completa

Detalles Bibliográficos
Autores principales: Lukić, Igor, Horvat, Ivana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693156/
https://www.ncbi.nlm.nih.gov/pubmed/33113803
http://dx.doi.org/10.3390/foods9111534
_version_ 1783614678810755072
author Lukić, Igor
Horvat, Ivana
author_facet Lukić, Igor
Horvat, Ivana
author_sort Lukić, Igor
collection PubMed
description To test the effect of the moment of bentonite addition, co-addition of tannins, and bentonite type on the differential affinity of pathogenesis-related (PR) proteins towards bentonite during grape must fermentation, three separate experiments were set up. PR proteins in the obtained wines were analyzed by reverse phase and size exclusion high-performance liquid chromatography (HPLC). The most significant reduction of bentonite dose and PR protein concentration was achieved by applying bentonite in the last third of fermentation. Particular thaumatin-like proteins (TLP) and proteins with lower molecular mass in general were more affected than others, while TLPs were more affected than chitinases. Exogenous enological tannins interacted with particular PR proteins, mostly TLPs, and lowered the total bentonite dose required. The combined application of tannins and bentonite in fermentation removed more PR proteins than bentonite alone, but did not achieve a synergistic effect in reducing the bentonite dose. Various bentonite types, including two Na-activated bentonites, an activated Na bentonite with specifically adsorbed silica, and an active Na-Ca bentonite, exhibited differential affinity towards different PR proteins. The results obtained could be used in developing wine fining protocols which combine treatments with complementary affinity for adsorption and removal of PR proteins, and in this way achieve greater efficiency of bentonite fining by reducing its total dose, which is of significant interest to the wine industry.
format Online
Article
Text
id pubmed-7693156
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76931562020-11-28 Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation Lukić, Igor Horvat, Ivana Foods Article To test the effect of the moment of bentonite addition, co-addition of tannins, and bentonite type on the differential affinity of pathogenesis-related (PR) proteins towards bentonite during grape must fermentation, three separate experiments were set up. PR proteins in the obtained wines were analyzed by reverse phase and size exclusion high-performance liquid chromatography (HPLC). The most significant reduction of bentonite dose and PR protein concentration was achieved by applying bentonite in the last third of fermentation. Particular thaumatin-like proteins (TLP) and proteins with lower molecular mass in general were more affected than others, while TLPs were more affected than chitinases. Exogenous enological tannins interacted with particular PR proteins, mostly TLPs, and lowered the total bentonite dose required. The combined application of tannins and bentonite in fermentation removed more PR proteins than bentonite alone, but did not achieve a synergistic effect in reducing the bentonite dose. Various bentonite types, including two Na-activated bentonites, an activated Na bentonite with specifically adsorbed silica, and an active Na-Ca bentonite, exhibited differential affinity towards different PR proteins. The results obtained could be used in developing wine fining protocols which combine treatments with complementary affinity for adsorption and removal of PR proteins, and in this way achieve greater efficiency of bentonite fining by reducing its total dose, which is of significant interest to the wine industry. MDPI 2020-10-25 /pmc/articles/PMC7693156/ /pubmed/33113803 http://dx.doi.org/10.3390/foods9111534 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lukić, Igor
Horvat, Ivana
Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation
title Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation
title_full Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation
title_fullStr Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation
title_full_unstemmed Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation
title_short Moment of Bentonite Addition, Co-Addition of Tannins, and Bentonite Type Affect the Differential Affinity of Pathogenesis-Related Grape Proteins towards Bentonite during Fermentation
title_sort moment of bentonite addition, co-addition of tannins, and bentonite type affect the differential affinity of pathogenesis-related grape proteins towards bentonite during fermentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693156/
https://www.ncbi.nlm.nih.gov/pubmed/33113803
http://dx.doi.org/10.3390/foods9111534
work_keys_str_mv AT lukicigor momentofbentoniteadditioncoadditionoftanninsandbentonitetypeaffectthedifferentialaffinityofpathogenesisrelatedgrapeproteinstowardsbentoniteduringfermentation
AT horvativana momentofbentoniteadditioncoadditionoftanninsandbentonitetypeaffectthedifferentialaffinityofpathogenesisrelatedgrapeproteinstowardsbentoniteduringfermentation