Cargando…

Enantiodivergent [4+2] Cycloaddition of Dienolates by Polyfunctional Lewis Acid/Zwitterion Catalysis

Diels–Alder reactions have become established as one of the most effective ways to prepare stereochemically complex six‐membered rings. Different catalysis concepts have been reported, including dienophile activation by Lewis acids or H‐bond donors and diene activation by bases. Herein we report a n...

Descripción completa

Detalles Bibliográficos
Autores principales: Miskov‐Pajic, Vukoslava, Willig, Felix, Wanner, Daniel M., Frey, Wolfgang, Peters, René
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693193/
https://www.ncbi.nlm.nih.gov/pubmed/32697020
http://dx.doi.org/10.1002/anie.202009093
Descripción
Sumario:Diels–Alder reactions have become established as one of the most effective ways to prepare stereochemically complex six‐membered rings. Different catalysis concepts have been reported, including dienophile activation by Lewis acids or H‐bond donors and diene activation by bases. Herein we report a new concept, in which an acidic prodiene is acidified by a Lewis acid to facilitate deprotonation by an imidazolium–aryloxide entity within a polyfunctional catalyst. A metal dienolate is thus formed, while an imidazolium–ArOH moiety probably forms hydrogen bonds with the dienophile. The catalyst type, readily prepared in few steps in high overall yield, was applied to 3‐hydroxy‐2‐pyrone and 3‐hydroxy‐2‐pyridone as well as cyclopentenone prodienes. Maleimide, maleic anhydride, and nitroolefin dienophiles were employed. Kinetic, spectroscopic, and control experiments support a cooperative mode of action. High enantioselectivity was observed even with unprecedented TONs of up to 3680.