Cargando…
Development and characterization of a human Th17‐driven ex vivo skin inflammation model
Skin models mimicking features of psoriasis‐related inflammation are needed to support the development of new drugs in dermatology. Reconstructed skin models lack tissue complexity, including a fully competent skin barrier, and presence and/or diversity of immune cells. Here, we describe InflammaSki...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693225/ https://www.ncbi.nlm.nih.gov/pubmed/32737987 http://dx.doi.org/10.1111/exd.14160 |
_version_ | 1783614694726041600 |
---|---|
author | Jardet, Claire David, Anthony Braun, Emilie Descargues, Pascal Grolleau, Jean‐Louis Hebsgaard, Josephine Norsgaard, Hanne Lovato, Paola |
author_facet | Jardet, Claire David, Anthony Braun, Emilie Descargues, Pascal Grolleau, Jean‐Louis Hebsgaard, Josephine Norsgaard, Hanne Lovato, Paola |
author_sort | Jardet, Claire |
collection | PubMed |
description | Skin models mimicking features of psoriasis‐related inflammation are needed to support the development of new drugs in dermatology. Reconstructed skin models lack tissue complexity, including a fully competent skin barrier, and presence and/or diversity of immune cells. Here, we describe InflammaSkin®, a novel human Th17‐driven ex vivo skin inflammation model. In this model, skin‐resident T cells are in situ activated by intradermal injection of anti‐CD3 and anti‐CD28 antibodies and Th17 cell polarization is sustained by culture in a chemically defined medium supplemented with IL‐1β, IL‐23 and TGF‐β for seven days. The acquired Th17 signature is demonstrated by the sustained secretion of IL‐17A, IL‐17AF, IL‐17F, IL‐22, IFN‐γ, and to some degree IL‐15 and TNF‐α observed in the activated ex vivo skin inflammation model compared with the non‐activated skin model control. Furthermore, expression of S100A7 and Keratin‐16 by keratinocytes and loss of epidermal structure integrity occur subsequently to in situ Th17cell activation, demonstrating cellular crosstalk between Th17 cells and keratinocytes. Finally, we demonstrate the use of this model to investigate the modulation of the IL‐23/IL‐17 immune axis by topically applied anti‐inflammatory compounds. Taken together, we show that by in situ activation of skin‐resident Th17 cells, the InflammaSkin® model reproduces aspects of inflammatory responses observed in psoriatic lesions and could be used as a translational tool to assess efficacy of test compounds. |
format | Online Article Text |
id | pubmed-7693225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76932252020-12-11 Development and characterization of a human Th17‐driven ex vivo skin inflammation model Jardet, Claire David, Anthony Braun, Emilie Descargues, Pascal Grolleau, Jean‐Louis Hebsgaard, Josephine Norsgaard, Hanne Lovato, Paola Exp Dermatol Original Research Article Skin models mimicking features of psoriasis‐related inflammation are needed to support the development of new drugs in dermatology. Reconstructed skin models lack tissue complexity, including a fully competent skin barrier, and presence and/or diversity of immune cells. Here, we describe InflammaSkin®, a novel human Th17‐driven ex vivo skin inflammation model. In this model, skin‐resident T cells are in situ activated by intradermal injection of anti‐CD3 and anti‐CD28 antibodies and Th17 cell polarization is sustained by culture in a chemically defined medium supplemented with IL‐1β, IL‐23 and TGF‐β for seven days. The acquired Th17 signature is demonstrated by the sustained secretion of IL‐17A, IL‐17AF, IL‐17F, IL‐22, IFN‐γ, and to some degree IL‐15 and TNF‐α observed in the activated ex vivo skin inflammation model compared with the non‐activated skin model control. Furthermore, expression of S100A7 and Keratin‐16 by keratinocytes and loss of epidermal structure integrity occur subsequently to in situ Th17cell activation, demonstrating cellular crosstalk between Th17 cells and keratinocytes. Finally, we demonstrate the use of this model to investigate the modulation of the IL‐23/IL‐17 immune axis by topically applied anti‐inflammatory compounds. Taken together, we show that by in situ activation of skin‐resident Th17 cells, the InflammaSkin® model reproduces aspects of inflammatory responses observed in psoriatic lesions and could be used as a translational tool to assess efficacy of test compounds. John Wiley and Sons Inc. 2020-08-25 2020-10 /pmc/articles/PMC7693225/ /pubmed/32737987 http://dx.doi.org/10.1111/exd.14160 Text en © 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Article Jardet, Claire David, Anthony Braun, Emilie Descargues, Pascal Grolleau, Jean‐Louis Hebsgaard, Josephine Norsgaard, Hanne Lovato, Paola Development and characterization of a human Th17‐driven ex vivo skin inflammation model |
title | Development and characterization of a human Th17‐driven ex vivo skin inflammation model |
title_full | Development and characterization of a human Th17‐driven ex vivo skin inflammation model |
title_fullStr | Development and characterization of a human Th17‐driven ex vivo skin inflammation model |
title_full_unstemmed | Development and characterization of a human Th17‐driven ex vivo skin inflammation model |
title_short | Development and characterization of a human Th17‐driven ex vivo skin inflammation model |
title_sort | development and characterization of a human th17‐driven ex vivo skin inflammation model |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693225/ https://www.ncbi.nlm.nih.gov/pubmed/32737987 http://dx.doi.org/10.1111/exd.14160 |
work_keys_str_mv | AT jardetclaire developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT davidanthony developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT braunemilie developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT descarguespascal developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT grolleaujeanlouis developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT hebsgaardjosephine developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT norsgaardhanne developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel AT lovatopaola developmentandcharacterizationofahumanth17drivenexvivoskininflammationmodel |