Cargando…

Electric Field‐Controlled Synthesis and Characterisation of Single Metal–Organic‐Framework (MOF) Nanoparticles

Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu(2+) sa...

Descripción completa

Detalles Bibliográficos
Autores principales: Morris, Peter D., McPherson, Ian J., Edwards, Martin A., Kashtiban, Reza J., Walton, Richard I., Unwin, Patrick R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693291/
https://www.ncbi.nlm.nih.gov/pubmed/32633454
http://dx.doi.org/10.1002/anie.202007146
Descripción
Sumario:Achieving control over the size distribution of metal–organic‐framework (MOF) nanoparticles is key to biomedical applications and seeding techniques. Electrochemical control over the nanoparticle synthesis of the MOF, HKUST‐1, is achieved using a nanopipette injection method to locally mix Cu(2+) salt precursor and benzene‐1,3,5‐tricarboxylate (BTC(3−)) ligand reagents, to form MOF nanocrystals, and collect and characterise them on a TEM grid. In situ analysis of the size and translocation frequency of HKUST‐1 nanoparticles is demonstrated, using the nanopipette to detect resistive pulses as nanoparticles form. Complementary modelling of mass transport in the electric field, enables particle size to be estimated and explains the feasibility of particular reaction conditions, including inhibitory effects of excess BTC(3−). These new methods should be applicable to a variety of MOFs, and scaling up synthesis possible via arrays of nanoscale reaction centres, for example using nanopore membranes.