Cargando…
Preferential Circularly Polarized Luminescence from a Nano-Segregated Liquid Crystalline Phase Using a Polymerized Twisted Nematic Platform
In this study, a polymerized twisted nematic (TN) network was used as an extrinsic chiral platform to overcome the heterogeneity during spontaneous symmetry breaking in a mixed system comprising an achiral bent-core molecule and rod-like mesogen. The TN platform was prepared by photopolymerizing a r...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693453/ https://www.ncbi.nlm.nih.gov/pubmed/33138132 http://dx.doi.org/10.3390/polym12112529 |
Sumario: | In this study, a polymerized twisted nematic (TN) network was used as an extrinsic chiral platform to overcome the heterogeneity during spontaneous symmetry breaking in a mixed system comprising an achiral bent-core molecule and rod-like mesogen. The TN platform was prepared by photopolymerizing a reactive mesogen dispersed in a low molecular weight liquid crystal with TN orientation. The use of TN orientation to correct the degeneracy in bent-core molecular systems has been previously reported; however, to the best of our knowledge, this is the first study that uses an extrinsic chiral platform of a polymerized TN network. The heterogeneity in the nano-segregated phase of the achiral mixture was suppressed using the extrinsic TN platform with a twisted angle θ of ≥ |±30°|. When an achiral mixture doped with a luminescent guest molecule was refilled into the extrinsic chiral platform, preferential deracemization with one-handedness occurred, corresponding to the handedness of the TN platform. Therefore, circularly polarized luminescence with a preferential handedness can be achieved using this extrinsic chiral platform. |
---|