Cargando…
Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer bet...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693585/ https://www.ncbi.nlm.nih.gov/pubmed/33126541 http://dx.doi.org/10.3390/nano10112143 |
_version_ | 1783614778702299136 |
---|---|
author | Marzolf, Daniel R. McKenzie, Aidan M. O’Malley, Matthew C. Ponomarenko, Nina S. Swaim, Coleman M. Brittain, Tyler J. Simmons, Natalie L. Pokkuluri, Phani Raj Mulfort, Karen L. Tiede, David M. Kokhan, Oleksandr |
author_facet | Marzolf, Daniel R. McKenzie, Aidan M. O’Malley, Matthew C. Ponomarenko, Nina S. Swaim, Coleman M. Brittain, Tyler J. Simmons, Natalie L. Pokkuluri, Phani Raj Mulfort, Karen L. Tiede, David M. Kokhan, Oleksandr |
author_sort | Marzolf, Daniel R. |
collection | PubMed |
description | Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4–8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies. |
format | Online Article Text |
id | pubmed-7693585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76935852020-11-28 Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires Marzolf, Daniel R. McKenzie, Aidan M. O’Malley, Matthew C. Ponomarenko, Nina S. Swaim, Coleman M. Brittain, Tyler J. Simmons, Natalie L. Pokkuluri, Phani Raj Mulfort, Karen L. Tiede, David M. Kokhan, Oleksandr Nanomaterials (Basel) Article Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4–8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies. MDPI 2020-10-28 /pmc/articles/PMC7693585/ /pubmed/33126541 http://dx.doi.org/10.3390/nano10112143 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Marzolf, Daniel R. McKenzie, Aidan M. O’Malley, Matthew C. Ponomarenko, Nina S. Swaim, Coleman M. Brittain, Tyler J. Simmons, Natalie L. Pokkuluri, Phani Raj Mulfort, Karen L. Tiede, David M. Kokhan, Oleksandr Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires |
title | Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires |
title_full | Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires |
title_fullStr | Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires |
title_full_unstemmed | Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires |
title_short | Mimicking Natural Photosynthesis: Designing Ultrafast Photosensitized Electron Transfer into Multiheme Cytochrome Protein Nanowires |
title_sort | mimicking natural photosynthesis: designing ultrafast photosensitized electron transfer into multiheme cytochrome protein nanowires |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693585/ https://www.ncbi.nlm.nih.gov/pubmed/33126541 http://dx.doi.org/10.3390/nano10112143 |
work_keys_str_mv | AT marzolfdanielr mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT mckenzieaidanm mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT omalleymatthewc mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT ponomarenkoninas mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT swaimcolemanm mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT brittaintylerj mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT simmonsnataliel mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT pokkuluriphaniraj mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT mulfortkarenl mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT tiededavidm mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires AT kokhanoleksandr mimickingnaturalphotosynthesisdesigningultrafastphotosensitizedelectrontransferintomultihemecytochromeproteinnanowires |