Cargando…
CoSinGAN: Learning COVID-19 Infection Segmentation from a Single Radiological Image
Computed tomography (CT) images are currently being adopted as the visual evidence for COVID-19 diagnosis in clinical practice. Automated detection of COVID-19 infection from CT images based on deep models is important for faster examination. Unfortunately, collecting large-scale training data syste...
Autores principales: | Zhang, Pengyi, Zhong, Yunxin, Deng, Yulin, Tang, Xiaoying, Li, Xiaoqiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693680/ https://www.ncbi.nlm.nih.gov/pubmed/33153105 http://dx.doi.org/10.3390/diagnostics10110901 |
Ejemplares similares
-
SinGAN-Seg: Synthetic training data generation for medical image segmentation
por: Thambawita, Vajira, et al.
Publicado: (2022) -
Spectral Normalized CycleGAN with Application in Semisupervised Semantic Segmentation of Sonar Images
por: Zhang, Zhisheng, et al.
Publicado: (2022) -
MiNuGAN: Dual Segmentation of Mitoses and Nuclei Using Conditional GANs on Multi-center Breast H&E Images
por: Razavi, Salar, et al.
Publicado: (2022) -
Single Image Video Prediction with Auto-Regressive GANs
por: Huang, Jiahui, et al.
Publicado: (2022) -
Self-supervised region-aware segmentation of COVID-19 CT images using 3D GAN and contrastive learning
por: Shabani, Siyavash, et al.
Publicado: (2022)