Cargando…

Bilayered Fibrin-Based Electrospun-Sprayed Scaffold Loaded with Platelet Lysate Enhances Wound Healing in a Diabetic Mouse Model

The present study examined the effects of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate by a combination of electrospinning and spray, phase-inversion method for wound healing. In particular, the poly(ether)urethane layer was obtained using by a spray phase-inversion me...

Descripción completa

Detalles Bibliográficos
Autores principales: Losi, Paola, Al Kayal, Tamer, Buscemi, Marianna, Foffa, Ilenia, Cavallo, Aida, Soldani, Giorgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693742/
https://www.ncbi.nlm.nih.gov/pubmed/33120874
http://dx.doi.org/10.3390/nano10112128
Descripción
Sumario:The present study examined the effects of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate by a combination of electrospinning and spray, phase-inversion method for wound healing. In particular, the poly(ether)urethane layer was obtained using by a spray phase-inversion method and the fibrin fibers network were loaded with platelet lysate by electrospinning. The kinetics release and the bioactivity of growth factors released from platelet lysate-scaffold were investigated by ELISA and cell proliferation test using mouse fibroblasts, respectively. The in-vitro experiments demonstrated that a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate provides a sustained release of bioactive platelet-derived growth factors. The effect of a bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate on wound healing in diabetic mouse (db/db) was also investigated. The application of the scaffold on full-thickness skin wounds significantly accelerated wound closure at day 14 post-surgery when compared to scaffold without platelet lysates or commercially available polyurethane film, and at the same level of growth factor-loaded scaffold. Histological analysis demonstrated an increased re-epithelialization and collagen deposition in platelet lysate and growth factor loaded scaffolds. The ability of bilayered fibrin/poly(ether)urethane scaffold loaded with platelet lysate to promote in-vivo wound healing suggests its usefulness in clinical treatment of diabetic ulcers.