Cargando…
Effects of Osthole on Progesterone Secretion in Chicken Preovulatory Follicles Granulosa Cells
SIMPLE SUMMARY: Progesterone produced by granulosa cells regulates the diverse reproductive events in poultry. Osthole is a natural compound extracted from Cnidium. In this study, we confirmed Osthole up-regulated the progesterone secretion though elevating the expression of key proteins in the proc...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693773/ https://www.ncbi.nlm.nih.gov/pubmed/33158008 http://dx.doi.org/10.3390/ani10112027 |
Sumario: | SIMPLE SUMMARY: Progesterone produced by granulosa cells regulates the diverse reproductive events in poultry. Osthole is a natural compound extracted from Cnidium. In this study, we confirmed Osthole up-regulated the progesterone secretion though elevating the expression of key proteins in the process of progesterone synthesis. These results indicate Osthole could be used in the pre-peak phase and (or) the peak phase to maximize the output of egg production in laying hens. Moreover, it provided a new idea that natural compounds may be the target library to screen the potential drugs used in poultry to increase the egg quality and yield. ABSTRACT: Osthole (Ost) is an active constituent of Cnidium monnieri (L.) Cusson which possesses anti-inflammatory and anti-oxidative properties. It also has estrogen-like activity and can stimulate corticosterone secretion. The present study was aimed to check the role of Ost on progesterone (P4) secretion in cultured granulosa cells obtained from hen preovulatory follicles. Different concentrations (5, 2.5, and 1.25 µg/mL) of Ost was added to granulosa cells for 6, 12, 18, and 24 h to investigate the level of progesterone secretions using enzyme linked immunosorbent assay (ELISA). The results showed that progesterone secretion was significantly increased in cells treated with Ost at 2.5 μg/mL. Also, qRT-PCR showed that mRNA expression of steroidogenic acute regulatory protein (StAR) was significantly up-regulated by Ost at 2.5 μg/mL concentration. Cytochrome P450 side-chain cleavage (P450scc) and 3β-hydroxysteroid dehydrogenase (3β-HSD) was significantly up-regulated by Ost. However, no significant differences were observed for the expression of proliferating cell nuclear antigen (PCNA). The protein expression of StAR, P450scc and 3β-HSD were significantly up-regulated by Ost treatment. The concentration of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in cell lysates showed no change with Ost treatment at 2.5 μg/mL by ELISA. An ROS kit showed non-significant difference in the level of reactive oxygen species (ROS). In conclusion, Ost treatment at a concentration of 2.5 μg/mL for 24 h had significantly up-regulated P4 secretion by elevating P450scc, 3β-HSD and StAR at both gene and protein level in granulosa cells obtained from hen preovulatory follicles. |
---|