Cargando…
O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis
SIMPLE SUMMARY: Nutritional disorders represent major risk factors for colorectal cancer according to mechanisms of action that are still insufficiently known. The aim of our study was to investigate the putative involvement of nutrition in the epigenetic downregulation of the tumor suppressor genes...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693889/ https://www.ncbi.nlm.nih.gov/pubmed/33126652 http://dx.doi.org/10.3390/cancers12113168 |
_version_ | 1783614849885929472 |
---|---|
author | Decourcelle, Amélie Very, Ninon Djouina, Madjid Loison, Ingrid Thévenet, Julien Body-Malapel, Mathilde Lelièvre, Eric Coqueret, Olivier Leprince, Dominique Yazidi-Belkoura, Ikram El Dehennaut, Vanessa |
author_facet | Decourcelle, Amélie Very, Ninon Djouina, Madjid Loison, Ingrid Thévenet, Julien Body-Malapel, Mathilde Lelièvre, Eric Coqueret, Olivier Leprince, Dominique Yazidi-Belkoura, Ikram El Dehennaut, Vanessa |
author_sort | Decourcelle, Amélie |
collection | PubMed |
description | SIMPLE SUMMARY: Nutritional disorders represent major risk factors for colorectal cancer according to mechanisms of action that are still insufficiently known. The aim of our study was to investigate the putative involvement of nutrition in the epigenetic downregulation of the tumor suppressor genes of the UNC5 (Uncoordinated 5) family during colonic carcinogenesis and to understand its molecular relays. Herein, we provided evidence that the consumption of a High Carbohydrate Diet worsens colon carcinogenesis in mice and is correlated with the downregulation of several members of the UNC5 family whose UNC5A (Uncoordinated 5A). Mechanistically, we identified the nutritional sensor O-GlcNAcylation as one of the molecular relays that regulate the recruitment of the PRC2 complex onto the UNC5A promoter to repress its transcription. ABSTRACT: While it is now accepted that nutrition can influence the epigenetic modifications occurring in colorectal cancer (CRC), the underlying mechanisms are not fully understood. Among the tumor suppressor genes frequently epigenetically downregulated in CRC, the four related genes of the UNC5 family: UNC5A, UNC5B, UNC5C and UNC5D encode dependence receptors that regulate the apoptosis/survival balance. Herein, in a mouse model of CRC, we found that the expression of UNC5A, UNC5B and UNC5C was diminished in tumors but only in mice subjected to a High Carbohydrate Diet (HCD) thus linking nutrition to their repression in CRC. O-GlcNAcylation is a nutritional sensor which has enhanced levels in CRC and regulates many cellular processes amongst epigenetics. We then investigated the putative involvement of O-GlcNAcylation in the epigenetic downregulation of the UNC5 family members. By a combination of pharmacological inhibition and RNA interference approaches coupled to RT-qPCR (Reverse Transcription-quantitative Polymerase Chain Reaction) analyses, promoter luciferase assay and CUT&RUN (Cleavage Under Target & Release Using Nuclease) experiments, we demonstrated that the O-GlcNAcylated form of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2) represses the transcription of UNC5A in human colon cancer cells. Collectively, our data support the hypothesis that O-GlcNAcylation could represent one link between nutrition and epigenetic downregulation of key tumor suppressor genes governing colon carcinogenesis including UNC5A. |
format | Online Article Text |
id | pubmed-7693889 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76938892020-11-28 O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis Decourcelle, Amélie Very, Ninon Djouina, Madjid Loison, Ingrid Thévenet, Julien Body-Malapel, Mathilde Lelièvre, Eric Coqueret, Olivier Leprince, Dominique Yazidi-Belkoura, Ikram El Dehennaut, Vanessa Cancers (Basel) Article SIMPLE SUMMARY: Nutritional disorders represent major risk factors for colorectal cancer according to mechanisms of action that are still insufficiently known. The aim of our study was to investigate the putative involvement of nutrition in the epigenetic downregulation of the tumor suppressor genes of the UNC5 (Uncoordinated 5) family during colonic carcinogenesis and to understand its molecular relays. Herein, we provided evidence that the consumption of a High Carbohydrate Diet worsens colon carcinogenesis in mice and is correlated with the downregulation of several members of the UNC5 family whose UNC5A (Uncoordinated 5A). Mechanistically, we identified the nutritional sensor O-GlcNAcylation as one of the molecular relays that regulate the recruitment of the PRC2 complex onto the UNC5A promoter to repress its transcription. ABSTRACT: While it is now accepted that nutrition can influence the epigenetic modifications occurring in colorectal cancer (CRC), the underlying mechanisms are not fully understood. Among the tumor suppressor genes frequently epigenetically downregulated in CRC, the four related genes of the UNC5 family: UNC5A, UNC5B, UNC5C and UNC5D encode dependence receptors that regulate the apoptosis/survival balance. Herein, in a mouse model of CRC, we found that the expression of UNC5A, UNC5B and UNC5C was diminished in tumors but only in mice subjected to a High Carbohydrate Diet (HCD) thus linking nutrition to their repression in CRC. O-GlcNAcylation is a nutritional sensor which has enhanced levels in CRC and regulates many cellular processes amongst epigenetics. We then investigated the putative involvement of O-GlcNAcylation in the epigenetic downregulation of the UNC5 family members. By a combination of pharmacological inhibition and RNA interference approaches coupled to RT-qPCR (Reverse Transcription-quantitative Polymerase Chain Reaction) analyses, promoter luciferase assay and CUT&RUN (Cleavage Under Target & Release Using Nuclease) experiments, we demonstrated that the O-GlcNAcylated form of the histone methyl transferase EZH2 (Enhancer of Zeste Homolog 2) represses the transcription of UNC5A in human colon cancer cells. Collectively, our data support the hypothesis that O-GlcNAcylation could represent one link between nutrition and epigenetic downregulation of key tumor suppressor genes governing colon carcinogenesis including UNC5A. MDPI 2020-10-28 /pmc/articles/PMC7693889/ /pubmed/33126652 http://dx.doi.org/10.3390/cancers12113168 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Decourcelle, Amélie Very, Ninon Djouina, Madjid Loison, Ingrid Thévenet, Julien Body-Malapel, Mathilde Lelièvre, Eric Coqueret, Olivier Leprince, Dominique Yazidi-Belkoura, Ikram El Dehennaut, Vanessa O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis |
title | O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis |
title_full | O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis |
title_fullStr | O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis |
title_full_unstemmed | O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis |
title_short | O-GlcNAcylation Links Nutrition to the Epigenetic Downregulation of UNC5A during Colon Carcinogenesis |
title_sort | o-glcnacylation links nutrition to the epigenetic downregulation of unc5a during colon carcinogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693889/ https://www.ncbi.nlm.nih.gov/pubmed/33126652 http://dx.doi.org/10.3390/cancers12113168 |
work_keys_str_mv | AT decourcelleamelie oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT veryninon oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT djouinamadjid oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT loisoningrid oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT thevenetjulien oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT bodymalapelmathilde oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT lelievreeric oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT coqueretolivier oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT leprincedominique oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT yazidibelkouraikramel oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis AT dehennautvanessa oglcnacylationlinksnutritiontotheepigeneticdownregulationofunc5aduringcoloncarcinogenesis |