Cargando…
Synthesis of Biocompatible and Environmentally Nanofibrous Mats Loaded with Moxifloxacin as a Model Drug for Biomedical Applications
Biopolymeric chitosan structure (Cs) is rationally investigated owing to its potentiality in pharmaceutical applications. The synthetic routes of biomimetic Cs-based blend electrospun nanofibers were studied. Herein, biocompatible crosslinked electrospun polyvinyl alcohol (PVA)/Cs-reduced gold nanop...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693921/ https://www.ncbi.nlm.nih.gov/pubmed/33126627 http://dx.doi.org/10.3390/pharmaceutics12111029 |
Sumario: | Biopolymeric chitosan structure (Cs) is rationally investigated owing to its potentiality in pharmaceutical applications. The synthetic routes of biomimetic Cs-based blend electrospun nanofibers were studied. Herein, biocompatible crosslinked electrospun polyvinyl alcohol (PVA)/Cs-reduced gold nanoparticles (Cs(Rg))/β-CD (beta-cyclodextrin) in pure water were fabricated. To this end, supportive PVA as a carrier, Cs bio modifier, and gold reductant and β-CD as smoother, inclusion guest molecule, and capping agent exhibit efficient entrapment of moxifloxacin (Mox) and consequently accelerate release. Besides, PVA/Cs(Rg)/β-CD paves towards controlled drug encapsulation-release affinity, antimicrobial, and for wound dressing. Without losing the nanofiber structure, the webs prolonged stability for particle size and release content up to 96.4%. The synergistic effect of the nanoformulation PVA/Cs(Rg)/β-CD against pathogenic bacteria, fungus, and yeast, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger, posed clear zones up to 53 φmm. Furthermore, a certain combination of PVA/Cs (Rg)/β-CD showed a total antioxidant capacity of 311.10 ± 2.86 mg AAE/g sample. In vitro cytotoxicity assay of HePG2 and MCF-7 NF6 can eradicate 34.8 and 29.3 µg/mL against selected cells. |
---|