Cargando…

Genetic Diversity of Aquatic Ranunculus (Batrachium, Ranunculaceae) in One River Basin Caused by Hybridization

Aquatic Ranunculus (sect. Batrachium) include homophyllous and heterophyllous plants. The development of floating leaves may be induced by genetic mechanisms or/and environmental conditions and this fact complicates the morphologically based identification of species. DNA-based studies provide the o...

Descripción completa

Detalles Bibliográficos
Autores principales: Butkuvienė, Jurgita, Sinkevičienė, Zofija, Naugžemys, Donatas, Žvingila, Donatas, Skridaila, Audrius, Bobrov, Alexander A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694053/
https://www.ncbi.nlm.nih.gov/pubmed/33126633
http://dx.doi.org/10.3390/plants9111455
Descripción
Sumario:Aquatic Ranunculus (sect. Batrachium) include homophyllous and heterophyllous plants. The development of floating leaves may be induced by genetic mechanisms or/and environmental conditions and this fact complicates the morphologically based identification of species. DNA-based studies provide the opportunity to expand the knowledge of this complicated group. We studied heterophyllous Ranunculus with well-developed capillary and intermediate leaves and visually homophyllous plants with capillary leaves from a single river basin, with the aim to evaluate their genetic polymorphism and taxonomic status—whether the plants with well-developed and weakly expressed intermediate leaves belong to different forms (taxa) or if they just express morphological variation of one or two taxa in a specific, very variable river environment. The studied heterophyllous and homophyllous plants from different rivers showed high genetic differentiation and a low level of genetic diversity within these groups. The molecular analysis did not reveal any inter simple sequence repeat (ISSR) polymorphism associated with the development of intermediate leaves. An analysis of nuclear ribosomal internal transcribed spacers ITS1–2 sequences revealed several ribotypes, which indicated the genetic heterogeneity of studied plants and indirectly confirmed the hybrid origin of some of them. Sterile plants originated from crossing of R. circinatus and R. penicillatus were discovered in the Skroblus River; however, identification of the parental species was impeded by the polymorphism detected. For this reason, cytological studies were performed and allowed confirmation of the hybrid origin of these plants.