Cargando…

Binding of κ-Conotoxin-PVIIA to Open and Closed Shaker K-Channels Are Differentially Affected by the Ionic Strength

κ-Conotoxin-PVIIA (κ-PVIIA) is a potassium-channel blocking peptide from the venom of the fish-hunting snail, Conus purpurascens, which is essential for quick prey’s excitotoxic immobilization. Binding of one κ-PVIIA to Shaker K-channels occludes the K(+)-conduction pore without additional conformat...

Descripción completa

Detalles Bibliográficos
Autores principales: Naranjo, David, Díaz-Franulic, Ignacio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694074/
https://www.ncbi.nlm.nih.gov/pubmed/33114777
http://dx.doi.org/10.3390/md18110533
Descripción
Sumario:κ-Conotoxin-PVIIA (κ-PVIIA) is a potassium-channel blocking peptide from the venom of the fish-hunting snail, Conus purpurascens, which is essential for quick prey’s excitotoxic immobilization. Binding of one κ-PVIIA to Shaker K-channels occludes the K(+)-conduction pore without additional conformational effects. Because this 27-residue toxin is +4-charged at neutral pH, we asked if electrostatic interactions play a role in binding. With Voltage-Clamp electrophysiology, we tested how ionic strength (IS) affects κ-PVIIA blockade to Shaker. When IS varied from ~0.06 to ~0.16 M, the dissociation constant for open and closed channels increased by ~5- and ~16-fold, respectively. While the association rates decreased equally, by ~4-fold, in open and closed channels, the dissociation rates increased 4–5-fold in closed channels but was IS-insensitive in open channels. To explain this differential IS-dependency, we propose that the bound κ-PVIIA wobbles, so that in open channels the intracellular environment, via ion-conduction pore, buffers the imposed IS-changes in the toxin-channel interface. A Brønsted-Bjerrum analysis on the rates predicts that if, instead of fish, the snail preyed on organisms with seawater-like lymph ionic composition, a severely harmless toxin, with >100-fold diminished affinity, would result. Thus, considerations of the native ionic environment are essential for conotoxins evaluation as pharmacological leads.