Cargando…
Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining
The effects of different reinforcement shapes on stability and repeatability of micro electrical discharge machining were experimentally investigated for ultra-high-temperature ceramics based on zirconium diboride (ZrB(2)) doped by SiC. Two reinforcement shapes, namely SiC short fibers and SiC whisk...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694160/ https://www.ncbi.nlm.nih.gov/pubmed/33114767 http://dx.doi.org/10.3390/mi11110959 |
_version_ | 1783614913079410688 |
---|---|
author | Quarto, Mariangela Bissacco, Giuliano D’Urso, Gianluca |
author_facet | Quarto, Mariangela Bissacco, Giuliano D’Urso, Gianluca |
author_sort | Quarto, Mariangela |
collection | PubMed |
description | The effects of different reinforcement shapes on stability and repeatability of micro electrical discharge machining were experimentally investigated for ultra-high-temperature ceramics based on zirconium diboride (ZrB(2)) doped by SiC. Two reinforcement shapes, namely SiC short fibers and SiC whiskers were selected in accordance with their potential effects on mechanical properties and oxidation performance. Specific sets of process parameters were defined minimizing the short circuits in order to identify the best combination for different pulse types. The obtained results were then correlated with the energy per single discharge and the discharges occurred for all the combinations of material and pulse type. The pulse characterization was performed by recording pulses data by means of an oscilloscope, while the surface characteristics were defined by a 3D reconstruction. The results indicated how reinforcement shapes affect the energy efficiency of the process and change the surface aspect. |
format | Online Article Text |
id | pubmed-7694160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76941602020-11-28 Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining Quarto, Mariangela Bissacco, Giuliano D’Urso, Gianluca Micromachines (Basel) Article The effects of different reinforcement shapes on stability and repeatability of micro electrical discharge machining were experimentally investigated for ultra-high-temperature ceramics based on zirconium diboride (ZrB(2)) doped by SiC. Two reinforcement shapes, namely SiC short fibers and SiC whiskers were selected in accordance with their potential effects on mechanical properties and oxidation performance. Specific sets of process parameters were defined minimizing the short circuits in order to identify the best combination for different pulse types. The obtained results were then correlated with the energy per single discharge and the discharges occurred for all the combinations of material and pulse type. The pulse characterization was performed by recording pulses data by means of an oscilloscope, while the surface characteristics were defined by a 3D reconstruction. The results indicated how reinforcement shapes affect the energy efficiency of the process and change the surface aspect. MDPI 2020-10-26 /pmc/articles/PMC7694160/ /pubmed/33114767 http://dx.doi.org/10.3390/mi11110959 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Quarto, Mariangela Bissacco, Giuliano D’Urso, Gianluca Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining |
title | Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining |
title_full | Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining |
title_fullStr | Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining |
title_full_unstemmed | Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining |
title_short | Study on ZrB(2)-Based Ceramics Reinforced with SiC Fibers or Whiskers Machined by Micro-Electrical Discharge Machining |
title_sort | study on zrb(2)-based ceramics reinforced with sic fibers or whiskers machined by micro-electrical discharge machining |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694160/ https://www.ncbi.nlm.nih.gov/pubmed/33114767 http://dx.doi.org/10.3390/mi11110959 |
work_keys_str_mv | AT quartomariangela studyonzrb2basedceramicsreinforcedwithsicfibersorwhiskersmachinedbymicroelectricaldischargemachining AT bissaccogiuliano studyonzrb2basedceramicsreinforcedwithsicfibersorwhiskersmachinedbymicroelectricaldischargemachining AT dursogianluca studyonzrb2basedceramicsreinforcedwithsicfibersorwhiskersmachinedbymicroelectricaldischargemachining |