Cargando…
Decoding semi-automated title-abstract screening: findings from a convenience sample of reviews
BACKGROUND: We evaluated the benefits and risks of using the Abstrackr machine learning (ML) tool to semi-automate title-abstract screening and explored whether Abstrackr’s predictions varied by review or study-level characteristics. METHODS: For a convenience sample of 16 reviews for which adequate...
Autores principales: | Gates, Allison, Gates, Michelle, DaRosa, Daniel, Elliott, Sarah A., Pillay, Jennifer, Rahman, Sholeh, Vandermeer, Ben, Hartling, Lisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694314/ https://www.ncbi.nlm.nih.gov/pubmed/33243276 http://dx.doi.org/10.1186/s13643-020-01528-x |
Ejemplares similares
-
The semi-automation of title and abstract screening: a retrospective exploration of ways to leverage Abstrackr’s relevance predictions in systematic and rapid reviews
por: Gates, Allison, et al.
Publicado: (2020) -
Technology-assisted title and abstract screening for systematic reviews: a retrospective evaluation of the Abstrackr machine learning tool
por: Gates, Allison, et al.
Publicado: (2018) -
Risk factors for severity of COVID-19: a rapid review to inform vaccine prioritisation in Canada
por: Wingert, Aireen, et al.
Publicado: (2021) -
Creating efficiencies in the extraction of data from randomized trials: a prospective evaluation of a machine learning and text mining tool
por: Gates, Allison, et al.
Publicado: (2021) -
Screening for the primary prevention of fragility fractures among adults aged 40 years and older in primary care: systematic reviews of the effects and acceptability of screening and treatment, and the accuracy of risk prediction tools
por: Gates, Michelle, et al.
Publicado: (2023)