Cargando…
Identifying the vegetation type in Google Earth images using a convolutional neural network: a case study for Japanese bamboo forests
BACKGROUND: Classifying and mapping vegetation are crucial tasks in environmental science and natural resource management. However, these tasks are difficult because conventional methods such as field surveys are highly labor-intensive. Identification of target objects from visual data using compute...
Autores principales: | Watanabe, Shuntaro, Sumi, Kazuaki, Ise, Takeshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694338/ https://www.ncbi.nlm.nih.gov/pubmed/33246473 http://dx.doi.org/10.1186/s12898-020-00331-5 |
Ejemplares similares
-
Assessing streetscape greenery with deep neural network using Google Street View
por: Kameoka, Taishin, et al.
Publicado: (2022) -
Using Google Maps and Google Earth
por: Miller, Michael
Publicado: (2011) -
Google Earth Forensics
por: Harrington, Michael
Publicado: (2014) -
Vegetation Types Mapping Using Multi-Temporal Landsat Images in the Google Earth Engine Platform
por: Aghababaei, Masoumeh, et al.
Publicado: (2021) -
Neuen Teilchenbeschleuniger in Google Earth betrachten
Publicado: (2008)