Cargando…
Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1
Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes—echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)—to inhibit d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694471/ https://www.ncbi.nlm.nih.gov/pubmed/33167501 http://dx.doi.org/10.3390/md18110550 |
_version_ | 1783614983784890368 |
---|---|
author | Mishchenko, Natalia P. Krylova, Natalia V. Iunikhina, Olga V. Vasileva, Elena A. Likhatskaya, Galina N. Pislyagin, Evgeny A. Tarbeeva, Darya V. Dmitrenok, Pavel S. Fedoreyev, Sergey A. |
author_facet | Mishchenko, Natalia P. Krylova, Natalia V. Iunikhina, Olga V. Vasileva, Elena A. Likhatskaya, Galina N. Pislyagin, Evgeny A. Tarbeeva, Darya V. Dmitrenok, Pavel S. Fedoreyev, Sergey A. |
author_sort | Mishchenko, Natalia P. |
collection | PubMed |
description | Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes—echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)—to inhibit different stages of HSV-1 infection in Vero cells and to reduce the virus-induced production of reactive oxygen species (ROS) was studied. We found that spinochromes exhibited maximum antiviral activity when HSV-1 was pretreated with these compounds, which indicated the direct effect of spinochromes on HSV-1 particles. EamB and EamA both showed the highest virucidal activity by inhibiting the HSV-1 plaque formation, with a selectivity index (SI) of 80.6 and 50.3, respectively, and a reduction in HSV-1 attachment to cells (SI of 8.5 and 5.8, respectively). EamA and EamB considerably suppressed the early induction of ROS due to the virus infection. The ability of the tested compounds to directly bind to the surface glycoprotein, gD, of HSV-1 was established in silico. The dock score of EchA, EamA, and EamB was −4.75, −5.09, and −5.19 kcal/mol, respectively, which correlated with the SI of the virucidal action of these compounds and explained their ability to suppress the attachment and penetration of the virus into the cells. |
format | Online Article Text |
id | pubmed-7694471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76944712020-11-28 Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 Mishchenko, Natalia P. Krylova, Natalia V. Iunikhina, Olga V. Vasileva, Elena A. Likhatskaya, Galina N. Pislyagin, Evgeny A. Tarbeeva, Darya V. Dmitrenok, Pavel S. Fedoreyev, Sergey A. Mar Drugs Article Herpes simplex virus type 1 (HSV-1) is one of the most prevalent pathogens worldwide requiring the search for new candidates for the creation of antiherpetic drugs. The ability of sea urchin spinochromes—echinochrome A (EchA) and its aminated analogues, echinamines A (EamA) and B (EamB)—to inhibit different stages of HSV-1 infection in Vero cells and to reduce the virus-induced production of reactive oxygen species (ROS) was studied. We found that spinochromes exhibited maximum antiviral activity when HSV-1 was pretreated with these compounds, which indicated the direct effect of spinochromes on HSV-1 particles. EamB and EamA both showed the highest virucidal activity by inhibiting the HSV-1 plaque formation, with a selectivity index (SI) of 80.6 and 50.3, respectively, and a reduction in HSV-1 attachment to cells (SI of 8.5 and 5.8, respectively). EamA and EamB considerably suppressed the early induction of ROS due to the virus infection. The ability of the tested compounds to directly bind to the surface glycoprotein, gD, of HSV-1 was established in silico. The dock score of EchA, EamA, and EamB was −4.75, −5.09, and −5.19 kcal/mol, respectively, which correlated with the SI of the virucidal action of these compounds and explained their ability to suppress the attachment and penetration of the virus into the cells. MDPI 2020-11-05 /pmc/articles/PMC7694471/ /pubmed/33167501 http://dx.doi.org/10.3390/md18110550 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mishchenko, Natalia P. Krylova, Natalia V. Iunikhina, Olga V. Vasileva, Elena A. Likhatskaya, Galina N. Pislyagin, Evgeny A. Tarbeeva, Darya V. Dmitrenok, Pavel S. Fedoreyev, Sergey A. Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 |
title | Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 |
title_full | Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 |
title_fullStr | Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 |
title_full_unstemmed | Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 |
title_short | Antiviral Potential of Sea Urchin Aminated Spinochromes against Herpes Simplex Virus Type 1 |
title_sort | antiviral potential of sea urchin aminated spinochromes against herpes simplex virus type 1 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694471/ https://www.ncbi.nlm.nih.gov/pubmed/33167501 http://dx.doi.org/10.3390/md18110550 |
work_keys_str_mv | AT mishchenkonataliap antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT krylovanataliav antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT iunikhinaolgav antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT vasilevaelenaa antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT likhatskayagalinan antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT pislyaginevgenya antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT tarbeevadaryav antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT dmitrenokpavels antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 AT fedoreyevsergeya antiviralpotentialofseaurchinaminatedspinochromesagainstherpessimplexvirustype1 |