Cargando…

Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity

SIMPLE SUMMARY: Alzheimer’s disease (AD) remains a major challenge for the healthcare system worldwide and, to date, no curative treatment is available. This disease is an irreversible progressive dementia that harms memory and cognitive functions, weakening the ability to carry out tasks by themsel...

Descripción completa

Detalles Bibliográficos
Autores principales: Medina-Vera, Dina, Rosell-Valle, Cristina, López-Gambero, Antonio J., Navarro, Juan A., Zambrana-Infantes, Emma N., Rivera, Patricia, Santín, Luis J., Suarez, Juan, Rodríguez de Fonseca, Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694492/
https://www.ncbi.nlm.nih.gov/pubmed/33167441
http://dx.doi.org/10.3390/biology9110377
_version_ 1783614988671254528
author Medina-Vera, Dina
Rosell-Valle, Cristina
López-Gambero, Antonio J.
Navarro, Juan A.
Zambrana-Infantes, Emma N.
Rivera, Patricia
Santín, Luis J.
Suarez, Juan
Rodríguez de Fonseca, Fernando
author_facet Medina-Vera, Dina
Rosell-Valle, Cristina
López-Gambero, Antonio J.
Navarro, Juan A.
Zambrana-Infantes, Emma N.
Rivera, Patricia
Santín, Luis J.
Suarez, Juan
Rodríguez de Fonseca, Fernando
author_sort Medina-Vera, Dina
collection PubMed
description SIMPLE SUMMARY: Alzheimer’s disease (AD) remains a major challenge for the healthcare system worldwide and, to date, no curative treatment is available. This disease is an irreversible progressive dementia that harms memory and cognitive functions, weakening the ability to carry out tasks by themselves. Among the potential targets for developing innovative therapies for AD, the endocannabinoid system has aroused much interest in the scientific community, since it is involved in multiple processes related to AD pathology. A major challenge to understand the role of the cannabinoid system in AD is to characterize how it contributes to the expression of a specific phenotype, from neuropathology to behavior. In the present study, we addressed this challenge by evaluating the expression of the endocannabinoid system in a transgenic mouse model of AD, bearing five familial AD mutations. Our data suggest that there is an association between the cannabinoid receptors and both the cognitive function and inflammatory response characterizing the disease. Moreover, this association is aggravated by genetic factors. From these data, the expression of endocannabinoid and G protein-coupled 55 receptors (GPR55), and endocannabinoid-related enzymes might be candidate markers for the detection of the severity of this neurodegenerative disease, eventually arising as potential therapeutic targets capable of modifying the course of this incapacitating dementia. ABSTRACT: Alzheimer’s disease (AD) is the most common form of neurodegeneration and dementia. The endocannabinoid (ECB) system has been proposed as a novel therapeutic target to treat AD. The present study explores the expression of the ECB system, the ECB-related receptor GPR55, and cognitive functions (novel object recognition; NOR) in the 5xFAD (FAD: family Alzheimer’s disease) transgenic mouse model of AD. Experiments were performed on heterozygous (HTZ) and homozygous (HZ) 11 month old mice. Protein expression of ECB system components, neuroinflammation markers, and β-amyloid (Aβ) plaques were analyzed in the hippocampus. According to the NOR test, anxiety-like behavior and memory were altered in both HTZ and HZ 5xFAD mice. Furthermore, both animal groups displayed a reduction of cannabinoid (CB1) receptor expression in the hippocampus, which is related to memory dysfunction. This finding was associated with indirect markers of enhanced ECB production, resulting from the combination of impaired monoacylglycerol lipase (MAGL) degradation and increased diacylglycerol lipase (DAGL) levels, an effect observed in the HZ group. Regarding neuroinflammation, we observed increased levels of CB2 receptors in the HZ group that positively correlate with Aβ’s accumulation. Moreover, HZ 5xFAD mice also exhibited increased expression of the GPR55 receptor. These results highlight the importance of the ECB signaling for the AD pathogenesis development beyond Aβ deposition.
format Online
Article
Text
id pubmed-7694492
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76944922020-11-28 Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity Medina-Vera, Dina Rosell-Valle, Cristina López-Gambero, Antonio J. Navarro, Juan A. Zambrana-Infantes, Emma N. Rivera, Patricia Santín, Luis J. Suarez, Juan Rodríguez de Fonseca, Fernando Biology (Basel) Article SIMPLE SUMMARY: Alzheimer’s disease (AD) remains a major challenge for the healthcare system worldwide and, to date, no curative treatment is available. This disease is an irreversible progressive dementia that harms memory and cognitive functions, weakening the ability to carry out tasks by themselves. Among the potential targets for developing innovative therapies for AD, the endocannabinoid system has aroused much interest in the scientific community, since it is involved in multiple processes related to AD pathology. A major challenge to understand the role of the cannabinoid system in AD is to characterize how it contributes to the expression of a specific phenotype, from neuropathology to behavior. In the present study, we addressed this challenge by evaluating the expression of the endocannabinoid system in a transgenic mouse model of AD, bearing five familial AD mutations. Our data suggest that there is an association between the cannabinoid receptors and both the cognitive function and inflammatory response characterizing the disease. Moreover, this association is aggravated by genetic factors. From these data, the expression of endocannabinoid and G protein-coupled 55 receptors (GPR55), and endocannabinoid-related enzymes might be candidate markers for the detection of the severity of this neurodegenerative disease, eventually arising as potential therapeutic targets capable of modifying the course of this incapacitating dementia. ABSTRACT: Alzheimer’s disease (AD) is the most common form of neurodegeneration and dementia. The endocannabinoid (ECB) system has been proposed as a novel therapeutic target to treat AD. The present study explores the expression of the ECB system, the ECB-related receptor GPR55, and cognitive functions (novel object recognition; NOR) in the 5xFAD (FAD: family Alzheimer’s disease) transgenic mouse model of AD. Experiments were performed on heterozygous (HTZ) and homozygous (HZ) 11 month old mice. Protein expression of ECB system components, neuroinflammation markers, and β-amyloid (Aβ) plaques were analyzed in the hippocampus. According to the NOR test, anxiety-like behavior and memory were altered in both HTZ and HZ 5xFAD mice. Furthermore, both animal groups displayed a reduction of cannabinoid (CB1) receptor expression in the hippocampus, which is related to memory dysfunction. This finding was associated with indirect markers of enhanced ECB production, resulting from the combination of impaired monoacylglycerol lipase (MAGL) degradation and increased diacylglycerol lipase (DAGL) levels, an effect observed in the HZ group. Regarding neuroinflammation, we observed increased levels of CB2 receptors in the HZ group that positively correlate with Aβ’s accumulation. Moreover, HZ 5xFAD mice also exhibited increased expression of the GPR55 receptor. These results highlight the importance of the ECB signaling for the AD pathogenesis development beyond Aβ deposition. MDPI 2020-11-05 /pmc/articles/PMC7694492/ /pubmed/33167441 http://dx.doi.org/10.3390/biology9110377 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Medina-Vera, Dina
Rosell-Valle, Cristina
López-Gambero, Antonio J.
Navarro, Juan A.
Zambrana-Infantes, Emma N.
Rivera, Patricia
Santín, Luis J.
Suarez, Juan
Rodríguez de Fonseca, Fernando
Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity
title Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity
title_full Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity
title_fullStr Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity
title_full_unstemmed Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity
title_short Imbalance of Endocannabinoid/Lysophosphatidylinositol Receptors Marks the Severity of Alzheimer’s Disease in a Preclinical Model: A Therapeutic Opportunity
title_sort imbalance of endocannabinoid/lysophosphatidylinositol receptors marks the severity of alzheimer’s disease in a preclinical model: a therapeutic opportunity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694492/
https://www.ncbi.nlm.nih.gov/pubmed/33167441
http://dx.doi.org/10.3390/biology9110377
work_keys_str_mv AT medinaveradina imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT rosellvallecristina imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT lopezgamberoantonioj imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT navarrojuana imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT zambranainfantesemman imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT riverapatricia imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT santinluisj imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT suarezjuan imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity
AT rodriguezdefonsecafernando imbalanceofendocannabinoidlysophosphatidylinositolreceptorsmarkstheseverityofalzheimersdiseaseinapreclinicalmodelatherapeuticopportunity