Cargando…

Thermoresponsive Polyoxazolines as Vectors for Transfection of Nucleic Acids

Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxic...

Descripción completa

Detalles Bibliográficos
Autores principales: Haladjova, Emi, Rangelov, Stanislav, Tsvetanov, Christo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694630/
https://www.ncbi.nlm.nih.gov/pubmed/33171983
http://dx.doi.org/10.3390/polym12112609
Descripción
Sumario:Poly(2-oxazoline)s (POx) are an attractive platform for the development of non-viral gene delivery systems. The combination of POx moieties, exhibiting excellent biocompatibility, with DNA-binding polyethyleneimine (PEI) moieties into a single copolymer chain is a promising approach to balance toxicity and transfection efficiency. The versatility of POx in terms of type of substituent, copolymer composition, degree of polymerization, degree of hydrolysis, and chain architecture, as well as the introduction of stimuli-responsive properties, provides opportunities to finely tune the copolymer characteristics and physicochemical properties of the polyplexes to increase the biological performance. An overview of the current state of research in the POx–PEI-based gene delivery systems focusing particularly on thermosensitive POx is presented in this paper.