Cargando…
Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice
BACKGROUND: Novel methods to aid identification of dogs with spontaneous Cushing's syndrome are warranted to optimize case selection for diagnostics, avoid unnecessary testing, and ultimately aid decision‐making for veterinarians. HYPOTHESIS/OBJECTIVES: To develop and internally validate a pred...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694798/ https://www.ncbi.nlm.nih.gov/pubmed/32935905 http://dx.doi.org/10.1111/jvim.15851 |
_version_ | 1783615057683283968 |
---|---|
author | Schofield, Imogen Brodbelt, David C. Niessen, Stijn J. M. Church, David B. Geddes, Rebecca F. Kennedy, Noel O'Neill, Dan G. |
author_facet | Schofield, Imogen Brodbelt, David C. Niessen, Stijn J. M. Church, David B. Geddes, Rebecca F. Kennedy, Noel O'Neill, Dan G. |
author_sort | Schofield, Imogen |
collection | PubMed |
description | BACKGROUND: Novel methods to aid identification of dogs with spontaneous Cushing's syndrome are warranted to optimize case selection for diagnostics, avoid unnecessary testing, and ultimately aid decision‐making for veterinarians. HYPOTHESIS/OBJECTIVES: To develop and internally validate a prediction tool for dogs receiving a diagnosis of Cushing's syndrome using primary‐care electronic health records. ANIMALS: Three hundred and ninety‐eight dogs diagnosed with Cushing's syndrome and 541 noncase dogs, tested for but not diagnosed with Cushing's syndrome, from a cohort of 905 544 dogs attending VetCompass participating practices. METHODS: A cross‐sectional study design was performed. A prediction model was developed using multivariable binary logistic regression taking the demography, presenting clinical signs and some routine laboratory results into consideration. Predictive performance of each model was assessed and internally validated through bootstrap resampling. A novel clinical prediction tool was developed from the final model. RESULTS: The final model included predictor variables sex, age, breed, polydipsia, vomiting, potbelly/hepatomegaly, alopecia, pruritus, alkaline phosphatase, and urine specific gravity. The model demonstrated good discrimination (area under the receiver operating curve [AUROC] = 0.78 [95% CI = 0.75‐0.81]; optimism‐adjusted AUROC = 0.76) and calibration (C‐slope = 0.86). A tool was developed from the model which calculates the predicted likelihood of a dog having Cushing's syndrome from 0% (score = −13) to 96% (score = 10). CONCLUSIONS AND CLINICAL IMPORTANCE: A tool to predict a diagnosis of Cushing's syndrome at the point of first suspicion in dogs was developed, with good predictive performance. This tool can be used in practice to support decision‐making and increase confidence in diagnosis. |
format | Online Article Text |
id | pubmed-7694798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76947982020-12-07 Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice Schofield, Imogen Brodbelt, David C. Niessen, Stijn J. M. Church, David B. Geddes, Rebecca F. Kennedy, Noel O'Neill, Dan G. J Vet Intern Med SMALL ANIMAL BACKGROUND: Novel methods to aid identification of dogs with spontaneous Cushing's syndrome are warranted to optimize case selection for diagnostics, avoid unnecessary testing, and ultimately aid decision‐making for veterinarians. HYPOTHESIS/OBJECTIVES: To develop and internally validate a prediction tool for dogs receiving a diagnosis of Cushing's syndrome using primary‐care electronic health records. ANIMALS: Three hundred and ninety‐eight dogs diagnosed with Cushing's syndrome and 541 noncase dogs, tested for but not diagnosed with Cushing's syndrome, from a cohort of 905 544 dogs attending VetCompass participating practices. METHODS: A cross‐sectional study design was performed. A prediction model was developed using multivariable binary logistic regression taking the demography, presenting clinical signs and some routine laboratory results into consideration. Predictive performance of each model was assessed and internally validated through bootstrap resampling. A novel clinical prediction tool was developed from the final model. RESULTS: The final model included predictor variables sex, age, breed, polydipsia, vomiting, potbelly/hepatomegaly, alopecia, pruritus, alkaline phosphatase, and urine specific gravity. The model demonstrated good discrimination (area under the receiver operating curve [AUROC] = 0.78 [95% CI = 0.75‐0.81]; optimism‐adjusted AUROC = 0.76) and calibration (C‐slope = 0.86). A tool was developed from the model which calculates the predicted likelihood of a dog having Cushing's syndrome from 0% (score = −13) to 96% (score = 10). CONCLUSIONS AND CLINICAL IMPORTANCE: A tool to predict a diagnosis of Cushing's syndrome at the point of first suspicion in dogs was developed, with good predictive performance. This tool can be used in practice to support decision‐making and increase confidence in diagnosis. John Wiley & Sons, Inc. 2020-09-16 2020 /pmc/articles/PMC7694798/ /pubmed/32935905 http://dx.doi.org/10.1111/jvim.15851 Text en © 2020 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals LLC on behalf of American College of Veterinary Internal Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | SMALL ANIMAL Schofield, Imogen Brodbelt, David C. Niessen, Stijn J. M. Church, David B. Geddes, Rebecca F. Kennedy, Noel O'Neill, Dan G. Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice |
title | Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice |
title_full | Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice |
title_fullStr | Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice |
title_full_unstemmed | Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice |
title_short | Development and internal validation of a prediction tool to aid the diagnosis of Cushing's syndrome in dogs attending primary‐care practice |
title_sort | development and internal validation of a prediction tool to aid the diagnosis of cushing's syndrome in dogs attending primary‐care practice |
topic | SMALL ANIMAL |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694798/ https://www.ncbi.nlm.nih.gov/pubmed/32935905 http://dx.doi.org/10.1111/jvim.15851 |
work_keys_str_mv | AT schofieldimogen developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice AT brodbeltdavidc developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice AT niessenstijnjm developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice AT churchdavidb developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice AT geddesrebeccaf developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice AT kennedynoel developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice AT oneilldang developmentandinternalvalidationofapredictiontooltoaidthediagnosisofcushingssyndromeindogsattendingprimarycarepractice |