Cargando…

Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils

Water pollution caused by metal contamination is of serious concern. Direct determination of trace metal ions in real water samples remains challenging. A sample preparation technique is a prerequisite before analysis. Herein, we report the facile water-based hydrothermal synthesis of cadmium sulfid...

Descripción completa

Detalles Bibliográficos
Autores principales: Ahmad, Hilal, Sharfan, Ibtisam I. Bin, Khan, Rais Ahmad, Alsalme, Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694963/
https://www.ncbi.nlm.nih.gov/pubmed/33171741
http://dx.doi.org/10.3390/nano10112218
_version_ 1783615091127615488
author Ahmad, Hilal
Sharfan, Ibtisam I. Bin
Khan, Rais Ahmad
Alsalme, Ali
author_facet Ahmad, Hilal
Sharfan, Ibtisam I. Bin
Khan, Rais Ahmad
Alsalme, Ali
author_sort Ahmad, Hilal
collection PubMed
description Water pollution caused by metal contamination is of serious concern. Direct determination of trace metal ions in real water samples remains challenging. A sample preparation technique is a prerequisite before analysis. Herein, we report the facile water-based hydrothermal synthesis of cadmium sulfide nanoparticles on a cellulose nanofiber surface to prepare a new adsorbent material. Field emission scanning electron microscopy, high-resolution tunneling electron microscopy, elemental mapping and X-ray photoelectron microscopy were used to characterize the surface morphology, structural determination, elemental composition and nature of bonding. The nanoadsorbent (cadmium-sulfide-decorated cellulose nanofibrils (CNFs@CdS)) was employed for the solid-phase extraction and determination of trace Hg(II) from aqueous media. The experimental conditions were optimized systematically and the data show a good Hg(II) adsorption capacity of 126.0 mg g(−1). The CNFs@CdS adsorbent shows the selective removal of Hg(II) accordingly to the hard and soft acid–base theory of metal–ligand interaction. A high preconcentration limit of 0.36 µg L(−1) was obtained with a preconcentration factor of 580. The lowest level of trace Hg(II) concentration, which was quantitatively analyzed by the proposed method, was found to be 0.06 µg L(−1). No significant interferences from the sample matrix were observed in the extraction of Hg(II). Analysis of the standard reference material (SRM 1641d) was carried out to validate the proposed methodology. Good agreement between the certified and observed values indicates the applicability of the developed methodology for the analysis of Hg(II) in tap water, river water and industrial wastewater samples.
format Online
Article
Text
id pubmed-7694963
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76949632020-11-28 Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils Ahmad, Hilal Sharfan, Ibtisam I. Bin Khan, Rais Ahmad Alsalme, Ali Nanomaterials (Basel) Article Water pollution caused by metal contamination is of serious concern. Direct determination of trace metal ions in real water samples remains challenging. A sample preparation technique is a prerequisite before analysis. Herein, we report the facile water-based hydrothermal synthesis of cadmium sulfide nanoparticles on a cellulose nanofiber surface to prepare a new adsorbent material. Field emission scanning electron microscopy, high-resolution tunneling electron microscopy, elemental mapping and X-ray photoelectron microscopy were used to characterize the surface morphology, structural determination, elemental composition and nature of bonding. The nanoadsorbent (cadmium-sulfide-decorated cellulose nanofibrils (CNFs@CdS)) was employed for the solid-phase extraction and determination of trace Hg(II) from aqueous media. The experimental conditions were optimized systematically and the data show a good Hg(II) adsorption capacity of 126.0 mg g(−1). The CNFs@CdS adsorbent shows the selective removal of Hg(II) accordingly to the hard and soft acid–base theory of metal–ligand interaction. A high preconcentration limit of 0.36 µg L(−1) was obtained with a preconcentration factor of 580. The lowest level of trace Hg(II) concentration, which was quantitatively analyzed by the proposed method, was found to be 0.06 µg L(−1). No significant interferences from the sample matrix were observed in the extraction of Hg(II). Analysis of the standard reference material (SRM 1641d) was carried out to validate the proposed methodology. Good agreement between the certified and observed values indicates the applicability of the developed methodology for the analysis of Hg(II) in tap water, river water and industrial wastewater samples. MDPI 2020-11-07 /pmc/articles/PMC7694963/ /pubmed/33171741 http://dx.doi.org/10.3390/nano10112218 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ahmad, Hilal
Sharfan, Ibtisam I. Bin
Khan, Rais Ahmad
Alsalme, Ali
Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils
title Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils
title_full Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils
title_fullStr Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils
title_full_unstemmed Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils
title_short Effective Enrichment and Quantitative Determination of Trace Hg(2+) Ions Using CdS-Decorated Cellulose Nanofibrils
title_sort effective enrichment and quantitative determination of trace hg(2+) ions using cds-decorated cellulose nanofibrils
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7694963/
https://www.ncbi.nlm.nih.gov/pubmed/33171741
http://dx.doi.org/10.3390/nano10112218
work_keys_str_mv AT ahmadhilal effectiveenrichmentandquantitativedeterminationoftracehg2ionsusingcdsdecoratedcellulosenanofibrils
AT sharfanibtisamibin effectiveenrichmentandquantitativedeterminationoftracehg2ionsusingcdsdecoratedcellulosenanofibrils
AT khanraisahmad effectiveenrichmentandquantitativedeterminationoftracehg2ionsusingcdsdecoratedcellulosenanofibrils
AT alsalmeali effectiveenrichmentandquantitativedeterminationoftracehg2ionsusingcdsdecoratedcellulosenanofibrils