Cargando…

The Changes of qEEG Approximate Entropy during Test of Variables of Attention as a Predictor of Major Depressive Disorder

Evaluating brain function through biosignals remains challenging. Quantitative electroencephalography (qEEG) outcomes have emerged as a potential intermediate biomarker for diagnostic clarification in psychological disorders. The Test of Variables of Attention (TOVA) was combined with qEEG to evalua...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shao-Tsu, Ku, Li-Chi, Chen, Shaw-Ji, Shen, Tsu-Wang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695214/
https://www.ncbi.nlm.nih.gov/pubmed/33171848
http://dx.doi.org/10.3390/brainsci10110828
Descripción
Sumario:Evaluating brain function through biosignals remains challenging. Quantitative electroencephalography (qEEG) outcomes have emerged as a potential intermediate biomarker for diagnostic clarification in psychological disorders. The Test of Variables of Attention (TOVA) was combined with qEEG to evaluate biomarkers such as absolute power, relative power, cordance, and approximate entropy from covariance matrix images to predict major depressive disorder (MDD). EEG data from 18 healthy control and 18 MDD patients were monitored during the resting state and TOVA. TOVA was found to provide aspects for the evaluation of MDD beyond resting electroencephalography. The results showed that the prefrontal qEEG theta cordance of the control and MDD groups were significantly different. For comparison, the changes in qEEG approximate entropy (ApEn) patterns observed during TOVA provided features to distinguish between participants with or without MDD. Moreover, ApEn scores during TOVA were a strong predictor of MDD, and the ApEn scores correlated with the Beck Depression Inventory (BDI) scores. Between-group differences in ApEn were more significant for the testing state than for the resting state. Our results provide further understanding for MDD treatment selection and response prediction during TOVA.