Cargando…
Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78
Plant beneficial rhizobacteria may antagonize soilborne plant pathogens by producing a vast array of volatile organic compounds (VOCs). The production of these compounds depends on the medium composition used for bacterial cell growth. Accordingly, Lysobacter capsici AZ78 (AZ78) grown on a protein-r...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695267/ https://www.ncbi.nlm.nih.gov/pubmed/33182371 http://dx.doi.org/10.3390/microorganisms8111761 |
_version_ | 1783615149358186496 |
---|---|
author | Vlassi, Anthi Nesler, Andrea Parich, Alexandra Puopolo, Gerardo Schuhmacher, Rainer |
author_facet | Vlassi, Anthi Nesler, Andrea Parich, Alexandra Puopolo, Gerardo Schuhmacher, Rainer |
author_sort | Vlassi, Anthi |
collection | PubMed |
description | Plant beneficial rhizobacteria may antagonize soilborne plant pathogens by producing a vast array of volatile organic compounds (VOCs). The production of these compounds depends on the medium composition used for bacterial cell growth. Accordingly, Lysobacter capsici AZ78 (AZ78) grown on a protein-rich medium was previously found to emit volatile pyrazines with toxic activity against soilborne phypathogenic fungi and oomycetes. However, the discrepancy between the quantity of pyrazines in the gaseous phase and the minimum quantity needed to achieve inhibition of plant pathogens observed, lead us to further investigate the volatile-mediated inhibitory activity of AZ78. Here, we show that, besides VOCs, AZ78 cells produce ammonia in increased amounts when a protein-rich medium is used for bacterial growth. The production of this volatile compound caused the alkalinization of the physically separated culture medium where Rhizoctonia solani was inoculated subsequently. Results achieved in this work clearly demonstrate that VOC, ammonia and the growth medium alkalinization contribute to the overall inhibitory activity of AZ78 against R. solani. Thus, our findings suggest that the volatile-mediated inhibitory activity of rhizobacteria in protein-rich substrates can be regarded as a result of multiple factors interaction, rather than exclusively VOCs production. |
format | Online Article Text |
id | pubmed-7695267 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76952672020-11-28 Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 Vlassi, Anthi Nesler, Andrea Parich, Alexandra Puopolo, Gerardo Schuhmacher, Rainer Microorganisms Article Plant beneficial rhizobacteria may antagonize soilborne plant pathogens by producing a vast array of volatile organic compounds (VOCs). The production of these compounds depends on the medium composition used for bacterial cell growth. Accordingly, Lysobacter capsici AZ78 (AZ78) grown on a protein-rich medium was previously found to emit volatile pyrazines with toxic activity against soilborne phypathogenic fungi and oomycetes. However, the discrepancy between the quantity of pyrazines in the gaseous phase and the minimum quantity needed to achieve inhibition of plant pathogens observed, lead us to further investigate the volatile-mediated inhibitory activity of AZ78. Here, we show that, besides VOCs, AZ78 cells produce ammonia in increased amounts when a protein-rich medium is used for bacterial growth. The production of this volatile compound caused the alkalinization of the physically separated culture medium where Rhizoctonia solani was inoculated subsequently. Results achieved in this work clearly demonstrate that VOC, ammonia and the growth medium alkalinization contribute to the overall inhibitory activity of AZ78 against R. solani. Thus, our findings suggest that the volatile-mediated inhibitory activity of rhizobacteria in protein-rich substrates can be regarded as a result of multiple factors interaction, rather than exclusively VOCs production. MDPI 2020-11-09 /pmc/articles/PMC7695267/ /pubmed/33182371 http://dx.doi.org/10.3390/microorganisms8111761 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vlassi, Anthi Nesler, Andrea Parich, Alexandra Puopolo, Gerardo Schuhmacher, Rainer Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 |
title | Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 |
title_full | Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 |
title_fullStr | Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 |
title_full_unstemmed | Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 |
title_short | Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78 |
title_sort | volatile-mediated inhibitory activity of rhizobacteria as a result of multiple factors interaction: the case of lysobacter capsici az78 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695267/ https://www.ncbi.nlm.nih.gov/pubmed/33182371 http://dx.doi.org/10.3390/microorganisms8111761 |
work_keys_str_mv | AT vlassianthi volatilemediatedinhibitoryactivityofrhizobacteriaasaresultofmultiplefactorsinteractionthecaseoflysobactercapsiciaz78 AT neslerandrea volatilemediatedinhibitoryactivityofrhizobacteriaasaresultofmultiplefactorsinteractionthecaseoflysobactercapsiciaz78 AT parichalexandra volatilemediatedinhibitoryactivityofrhizobacteriaasaresultofmultiplefactorsinteractionthecaseoflysobactercapsiciaz78 AT puopologerardo volatilemediatedinhibitoryactivityofrhizobacteriaasaresultofmultiplefactorsinteractionthecaseoflysobactercapsiciaz78 AT schuhmacherrainer volatilemediatedinhibitoryactivityofrhizobacteriaasaresultofmultiplefactorsinteractionthecaseoflysobactercapsiciaz78 |