Cargando…
A Physics-Informed Assembly of Feed-Forward Neural Network Engines to Predict Inelasticity in Cross-Linked Polymers
In solid mechanics, data-driven approaches are widely considered as the new paradigm that can overcome the classic problems of constitutive models such as limiting hypothesis, complexity, and accuracy. However, the implementation of machine-learned approaches in material modeling has been modest due...
Autores principales: | Ghaderi, Aref, Morovati, Vahid, Dargazany, Roozbeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695324/ https://www.ncbi.nlm.nih.gov/pubmed/33182257 http://dx.doi.org/10.3390/polym12112628 |
Ejemplares similares
-
The forward inelastic telescope T2 for the TOTEM experiment at the LHC
por: Oliveri, Eraldo
Publicado: (2010) -
Deep Inelastic Nonforward and Forward Lepton-Nucleon Scattering
por: Blümlein, Johannes, et al.
Publicado: (1998) -
Forward protons and antiprotons in deep inelastic muon scattering
por: Benchouk, C
Publicado: (1983) -
Azimuthal decorrelation of forward jets in Deep Inelastic Scattering
por: Sabio Vera, Agustin, et al.
Publicado: (2007) -
Forward produced protons and antiprotons in deep inelastic muon scattering
por: Nagy, E
Publicado: (1982)