Cargando…
Machine Learning Analysis of Raman Spectra of MoS(2)
Defects introduced during the growth process greatly affect the device performance of two-dimensional (2D) materials. Here we demonstrate the applicability of employing machine-learning-based analysis to distinguish the monolayer continuous film and defect areas of molybdenum disulfide (MoS(2)) usin...
Autores principales: | Mao, Yu, Dong, Ningning, Wang, Lei, Chen, Xin, Wang, Hongqiang, Wang, Zixin, Kislyakov, Ivan M., Wang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695331/ https://www.ncbi.nlm.nih.gov/pubmed/33182274 http://dx.doi.org/10.3390/nano10112223 |
Ejemplares similares
-
MoS(2)-Plasmonic
Nanocavities for
Raman Spectra of Single Extracellular Vesicles Reveal Molecular Progression
in Glioblastoma
por: Jalali, Mahsa, et al.
Publicado: (2023) -
Machine Learning-Assisted Large-Area Preparation of MoS(2) Materials
por: Wang, Jingting, et al.
Publicado: (2023) -
Manipulating the Raman scattering rotation via magnetic field in an MoS(2) monolayer
por: Wan, Yi, et al.
Publicado: (2021) -
MoS(2) Nanodonuts for High-Sensitivity Surface-Enhanced Raman Spectroscopy
por: Ghopry, Samar Ali, et al.
Publicado: (2021) -
Single-Cell Photothermal Analysis Induced by MoS(2) Nanoparticles by Raman Spectroscopy
por: Rusciano, Giulia, et al.
Publicado: (2022)