Cargando…
Galectin-1 promotes vasculogenic mimicry in gastric adenocarcinoma via the Hedgehog/GLI signaling pathway
Background: Galectin-1 (GAL-1), which is encoded by LGALS1, promotes vasculogenic mimicry (VM) in gastric cancer (GC) tissue. However, the underlying mechanism remains unclear. Methods: Immunohistochemical (IHC) and CD34-periodic acid-Schiff (PAS) double staining were used to investigate Glioma-asso...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695400/ https://www.ncbi.nlm.nih.gov/pubmed/33170154 http://dx.doi.org/10.18632/aging.104000 |
Sumario: | Background: Galectin-1 (GAL-1), which is encoded by LGALS1, promotes vasculogenic mimicry (VM) in gastric cancer (GC) tissue. However, the underlying mechanism remains unclear. Methods: Immunohistochemical (IHC) and CD34-periodic acid-Schiff (PAS) double staining were used to investigate Glioma-associated oncogene-1(GLI1) expression and VM in paraffin-embedded sections from 127 patients with GC of all tumor stages. LGALS1 or GLI1 were stably transduced into MGC-803 cells and AGS cells, and western blotting, IHC, CD34-PAS double staining and three-dimensional culture in vitro, and tumorigenicity in vivo were used to explore the mechanisms of GAL-1/ GLI1 promotion of VM formation in GC tissues. Results: A significant association between GAL-1 and GLI1 expression was identified by IHC staining, as well as a significant association between GLI1 expression and VM formation. Furthermore, overexpression of LGALS1 enhanced expression of GLI1 in MGC-803 and AGS cells. GLI1 promoted VM formation both in vitro and in vivo. The effects of GLI1 on VM formation were independent of LGALS1. Importantly, the expression of VM-related molecules, such as MMP2, MMP14 and laminin5γ2, was also affected upon GLI1 overexpression or silencing in GC cell lines. Conclusion: GAL-1 promotes VM in GC through the Hh/GLI pathway, which has potential as a novel therapeutic target for treatment of VM in GC. |
---|