Cargando…

Subthalamic beta-targeted neurofeedback speeds up movement initiation but increases tremor in Parkinsonian patients

Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whet...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Shenghong, Mostofi, Abteen, Syed, Emilie, Torrecillos, Flavie, Tinkhauser, Gerd, Fischer, Petra, Pogosyan, Alek, Hasegawa, Harutomo, Li, Yuanqing, Ashkan, Keyoumars, Pereira, Erlick, Brown, Peter, Tan, Huiling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695453/
https://www.ncbi.nlm.nih.gov/pubmed/33205752
http://dx.doi.org/10.7554/eLife.60979
Descripción
Sumario:Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson’s disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.