Cargando…
Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm)
Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695662/ https://www.ncbi.nlm.nih.gov/pubmed/33247365 http://dx.doi.org/10.1007/s10856-020-06449-8 |
_version_ | 1783615238461980672 |
---|---|
author | Wey, Karolin Epple, Matthias |
author_facet | Wey, Karolin Epple, Matthias |
author_sort | Wey, Karolin |
collection | PubMed |
description | Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV–Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV–Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC). [Image: see text] |
format | Online Article Text |
id | pubmed-7695662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-76956622020-12-09 Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) Wey, Karolin Epple, Matthias J Mater Sci Mater Med Biomaterials Synthesis and Characterization Ultrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV–Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV–Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC). [Image: see text] Springer US 2020-11-28 2020 /pmc/articles/PMC7695662/ /pubmed/33247365 http://dx.doi.org/10.1007/s10856-020-06449-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Biomaterials Synthesis and Characterization Wey, Karolin Epple, Matthias Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) |
title | Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) |
title_full | Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) |
title_fullStr | Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) |
title_full_unstemmed | Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) |
title_short | Ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(D,L-lactide-co-glycolide) nanoparticles (140 nm) |
title_sort | ultrasmall gold and silver/gold nanoparticles (2 nm) as autofluorescent labels for poly(d,l-lactide-co-glycolide) nanoparticles (140 nm) |
topic | Biomaterials Synthesis and Characterization |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695662/ https://www.ncbi.nlm.nih.gov/pubmed/33247365 http://dx.doi.org/10.1007/s10856-020-06449-8 |
work_keys_str_mv | AT weykarolin ultrasmallgoldandsilvergoldnanoparticles2nmasautofluorescentlabelsforpolydllactidecoglycolidenanoparticles140nm AT epplematthias ultrasmallgoldandsilvergoldnanoparticles2nmasautofluorescentlabelsforpolydllactidecoglycolidenanoparticles140nm |