Cargando…
Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells
Microbial fuel cell (MFC) power performance strongly depends on the biofilm growth, which in turn is affected by the feed flow rate. In this work, an artificial neural network (ANN) approach has been used to simulate the effect of the flow rate on the power output by ceramic MFCs fed with neat human...
Autores principales: | de Ramón-Fernández, A., Salar-García, M.J., Ruiz Fernández, D., Greenman, J., Ieropoulos, I.A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695679/ https://www.ncbi.nlm.nih.gov/pubmed/33335352 http://dx.doi.org/10.1016/j.energy.2020.118806 |
Ejemplares similares
-
Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells
por: Salar-Garcia, Maria Jose, et al.
Publicado: (2020) -
Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach
por: de Ramón-Fernández, Alberto, et al.
Publicado: (2019) -
Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes
por: Salar-Garcia, M.J., et al.
Publicado: (2020) -
Optimisation of the internal structure of ceramic membranes for electricity production in urine-fed microbial fuel cells
por: Salar-García, M.J., et al.
Publicado: (2020) -
Electronic faucet powered by low cost ceramic microbial fuel cells treating urine
por: Merino Jimenez, Irene, et al.
Publicado: (2021)