Cargando…
Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695723/ https://www.ncbi.nlm.nih.gov/pubmed/33298938 http://dx.doi.org/10.1038/s41523-020-00203-7 |
_version_ | 1783615252577910784 |
---|---|
author | Li, Wen Newitt, David C. Gibbs, Jessica Wilmes, Lisa J. Jones, Ella F. Arasu, Vignesh A. Strand, Fredrik Onishi, Natsuko Nguyen, Alex Anh-Tu Kornak, John Joe, Bonnie N. Price, Elissa R. Ojeda-Fournier, Haydee Eghtedari, Mohammad Zamora, Kathryn W. Woodard, Stefanie A. Umphrey, Heidi Bernreuter, Wanda Nelson, Michael Church, An Ly Bolan, Patrick Kuritza, Theresa Ward, Kathleen Morley, Kevin Wolverton, Dulcy Fountain, Kelly Lopez-Paniagua, Dan Hardesty, Lara Brandt, Kathy McDonald, Elizabeth S. Rosen, Mark Kontos, Despina Abe, Hiroyuki Sheth, Deepa Crane, Erin P. Dillis, Charlotte Sheth, Pulin Hovanessian-Larsen, Linda Bang, Dae Hee Porter, Bruce Oh, Karen Y. Jafarian, Neda Tudorica, Alina Niell, Bethany L. Drukteinis, Jennifer Newell, Mary S. Cohen, Michael A. Giurescu, Marina Berman, Elise Lehman, Constance Partridge, Savannah C. Fitzpatrick, Kimberly A. Borders, Marisa H. Yang, Wei T. Dogan, Basak Goudreau, Sally Chenevert, Thomas Yau, Christina DeMichele, Angela Berry, Don Esserman, Laura J. Hylton, Nola M. |
author_facet | Li, Wen Newitt, David C. Gibbs, Jessica Wilmes, Lisa J. Jones, Ella F. Arasu, Vignesh A. Strand, Fredrik Onishi, Natsuko Nguyen, Alex Anh-Tu Kornak, John Joe, Bonnie N. Price, Elissa R. Ojeda-Fournier, Haydee Eghtedari, Mohammad Zamora, Kathryn W. Woodard, Stefanie A. Umphrey, Heidi Bernreuter, Wanda Nelson, Michael Church, An Ly Bolan, Patrick Kuritza, Theresa Ward, Kathleen Morley, Kevin Wolverton, Dulcy Fountain, Kelly Lopez-Paniagua, Dan Hardesty, Lara Brandt, Kathy McDonald, Elizabeth S. Rosen, Mark Kontos, Despina Abe, Hiroyuki Sheth, Deepa Crane, Erin P. Dillis, Charlotte Sheth, Pulin Hovanessian-Larsen, Linda Bang, Dae Hee Porter, Bruce Oh, Karen Y. Jafarian, Neda Tudorica, Alina Niell, Bethany L. Drukteinis, Jennifer Newell, Mary S. Cohen, Michael A. Giurescu, Marina Berman, Elise Lehman, Constance Partridge, Savannah C. Fitzpatrick, Kimberly A. Borders, Marisa H. Yang, Wei T. Dogan, Basak Goudreau, Sally Chenevert, Thomas Yau, Christina DeMichele, Angela Berry, Don Esserman, Laura J. Hylton, Nola M. |
author_sort | Li, Wen |
collection | PubMed |
description | Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype. |
format | Online Article Text |
id | pubmed-7695723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-76957232020-11-30 Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL Li, Wen Newitt, David C. Gibbs, Jessica Wilmes, Lisa J. Jones, Ella F. Arasu, Vignesh A. Strand, Fredrik Onishi, Natsuko Nguyen, Alex Anh-Tu Kornak, John Joe, Bonnie N. Price, Elissa R. Ojeda-Fournier, Haydee Eghtedari, Mohammad Zamora, Kathryn W. Woodard, Stefanie A. Umphrey, Heidi Bernreuter, Wanda Nelson, Michael Church, An Ly Bolan, Patrick Kuritza, Theresa Ward, Kathleen Morley, Kevin Wolverton, Dulcy Fountain, Kelly Lopez-Paniagua, Dan Hardesty, Lara Brandt, Kathy McDonald, Elizabeth S. Rosen, Mark Kontos, Despina Abe, Hiroyuki Sheth, Deepa Crane, Erin P. Dillis, Charlotte Sheth, Pulin Hovanessian-Larsen, Linda Bang, Dae Hee Porter, Bruce Oh, Karen Y. Jafarian, Neda Tudorica, Alina Niell, Bethany L. Drukteinis, Jennifer Newell, Mary S. Cohen, Michael A. Giurescu, Marina Berman, Elise Lehman, Constance Partridge, Savannah C. Fitzpatrick, Kimberly A. Borders, Marisa H. Yang, Wei T. Dogan, Basak Goudreau, Sally Chenevert, Thomas Yau, Christina DeMichele, Angela Berry, Don Esserman, Laura J. Hylton, Nola M. NPJ Breast Cancer Article Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype. Nature Publishing Group UK 2020-11-27 /pmc/articles/PMC7695723/ /pubmed/33298938 http://dx.doi.org/10.1038/s41523-020-00203-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Wen Newitt, David C. Gibbs, Jessica Wilmes, Lisa J. Jones, Ella F. Arasu, Vignesh A. Strand, Fredrik Onishi, Natsuko Nguyen, Alex Anh-Tu Kornak, John Joe, Bonnie N. Price, Elissa R. Ojeda-Fournier, Haydee Eghtedari, Mohammad Zamora, Kathryn W. Woodard, Stefanie A. Umphrey, Heidi Bernreuter, Wanda Nelson, Michael Church, An Ly Bolan, Patrick Kuritza, Theresa Ward, Kathleen Morley, Kevin Wolverton, Dulcy Fountain, Kelly Lopez-Paniagua, Dan Hardesty, Lara Brandt, Kathy McDonald, Elizabeth S. Rosen, Mark Kontos, Despina Abe, Hiroyuki Sheth, Deepa Crane, Erin P. Dillis, Charlotte Sheth, Pulin Hovanessian-Larsen, Linda Bang, Dae Hee Porter, Bruce Oh, Karen Y. Jafarian, Neda Tudorica, Alina Niell, Bethany L. Drukteinis, Jennifer Newell, Mary S. Cohen, Michael A. Giurescu, Marina Berman, Elise Lehman, Constance Partridge, Savannah C. Fitzpatrick, Kimberly A. Borders, Marisa H. Yang, Wei T. Dogan, Basak Goudreau, Sally Chenevert, Thomas Yau, Christina DeMichele, Angela Berry, Don Esserman, Laura J. Hylton, Nola M. Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL |
title | Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL |
title_full | Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL |
title_fullStr | Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL |
title_full_unstemmed | Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL |
title_short | Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL |
title_sort | predicting breast cancer response to neoadjuvant treatment using multi-feature mri: results from the i-spy 2 trial |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695723/ https://www.ncbi.nlm.nih.gov/pubmed/33298938 http://dx.doi.org/10.1038/s41523-020-00203-7 |
work_keys_str_mv | AT liwen predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT newittdavidc predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT gibbsjessica predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT wilmeslisaj predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT jonesellaf predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT arasuvignesha predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT strandfredrik predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT onishinatsuko predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT nguyenalexanhtu predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT kornakjohn predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT joebonnien predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT priceelissar predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT ojedafournierhaydee predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT eghtedarimohammad predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT zamorakathrynw predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT woodardstefaniea predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT umphreyheidi predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT bernreuterwanda predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT nelsonmichael predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT churchanly predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT bolanpatrick predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT kuritzatheresa predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT wardkathleen predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT morleykevin predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT wolvertondulcy predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT fountainkelly predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT lopezpaniaguadan predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT hardestylara predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT brandtkathy predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT mcdonaldelizabeths predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT rosenmark predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT kontosdespina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT abehiroyuki predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT shethdeepa predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT craneerinp predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT dillischarlotte predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT shethpulin predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT hovanessianlarsenlinda predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT bangdaehee predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT porterbruce predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT ohkareny predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT jafarianneda predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT tudoricaalina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT niellbethanyl predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT drukteinisjennifer predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT newellmarys predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT cohenmichaela predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT giurescumarina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT bermanelise predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT lehmanconstance predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT partridgesavannahc predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT fitzpatrickkimberlya predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT bordersmarisah predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT yangweit predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT doganbasak predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT goudreausally predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT chenevertthomas predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT yauchristina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT demicheleangela predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT berrydon predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT essermanlauraj predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial AT hyltonnolam predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial |