Cargando…

Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL

Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wen, Newitt, David C., Gibbs, Jessica, Wilmes, Lisa J., Jones, Ella F., Arasu, Vignesh A., Strand, Fredrik, Onishi, Natsuko, Nguyen, Alex Anh-Tu, Kornak, John, Joe, Bonnie N., Price, Elissa R., Ojeda-Fournier, Haydee, Eghtedari, Mohammad, Zamora, Kathryn W., Woodard, Stefanie A., Umphrey, Heidi, Bernreuter, Wanda, Nelson, Michael, Church, An Ly, Bolan, Patrick, Kuritza, Theresa, Ward, Kathleen, Morley, Kevin, Wolverton, Dulcy, Fountain, Kelly, Lopez-Paniagua, Dan, Hardesty, Lara, Brandt, Kathy, McDonald, Elizabeth S., Rosen, Mark, Kontos, Despina, Abe, Hiroyuki, Sheth, Deepa, Crane, Erin P., Dillis, Charlotte, Sheth, Pulin, Hovanessian-Larsen, Linda, Bang, Dae Hee, Porter, Bruce, Oh, Karen Y., Jafarian, Neda, Tudorica, Alina, Niell, Bethany L., Drukteinis, Jennifer, Newell, Mary S., Cohen, Michael A., Giurescu, Marina, Berman, Elise, Lehman, Constance, Partridge, Savannah C., Fitzpatrick, Kimberly A., Borders, Marisa H., Yang, Wei T., Dogan, Basak, Goudreau, Sally, Chenevert, Thomas, Yau, Christina, DeMichele, Angela, Berry, Don, Esserman, Laura J., Hylton, Nola M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695723/
https://www.ncbi.nlm.nih.gov/pubmed/33298938
http://dx.doi.org/10.1038/s41523-020-00203-7
_version_ 1783615252577910784
author Li, Wen
Newitt, David C.
Gibbs, Jessica
Wilmes, Lisa J.
Jones, Ella F.
Arasu, Vignesh A.
Strand, Fredrik
Onishi, Natsuko
Nguyen, Alex Anh-Tu
Kornak, John
Joe, Bonnie N.
Price, Elissa R.
Ojeda-Fournier, Haydee
Eghtedari, Mohammad
Zamora, Kathryn W.
Woodard, Stefanie A.
Umphrey, Heidi
Bernreuter, Wanda
Nelson, Michael
Church, An Ly
Bolan, Patrick
Kuritza, Theresa
Ward, Kathleen
Morley, Kevin
Wolverton, Dulcy
Fountain, Kelly
Lopez-Paniagua, Dan
Hardesty, Lara
Brandt, Kathy
McDonald, Elizabeth S.
Rosen, Mark
Kontos, Despina
Abe, Hiroyuki
Sheth, Deepa
Crane, Erin P.
Dillis, Charlotte
Sheth, Pulin
Hovanessian-Larsen, Linda
Bang, Dae Hee
Porter, Bruce
Oh, Karen Y.
Jafarian, Neda
Tudorica, Alina
Niell, Bethany L.
Drukteinis, Jennifer
Newell, Mary S.
Cohen, Michael A.
Giurescu, Marina
Berman, Elise
Lehman, Constance
Partridge, Savannah C.
Fitzpatrick, Kimberly A.
Borders, Marisa H.
Yang, Wei T.
Dogan, Basak
Goudreau, Sally
Chenevert, Thomas
Yau, Christina
DeMichele, Angela
Berry, Don
Esserman, Laura J.
Hylton, Nola M.
author_facet Li, Wen
Newitt, David C.
Gibbs, Jessica
Wilmes, Lisa J.
Jones, Ella F.
Arasu, Vignesh A.
Strand, Fredrik
Onishi, Natsuko
Nguyen, Alex Anh-Tu
Kornak, John
Joe, Bonnie N.
Price, Elissa R.
Ojeda-Fournier, Haydee
Eghtedari, Mohammad
Zamora, Kathryn W.
Woodard, Stefanie A.
Umphrey, Heidi
Bernreuter, Wanda
Nelson, Michael
Church, An Ly
Bolan, Patrick
Kuritza, Theresa
Ward, Kathleen
Morley, Kevin
Wolverton, Dulcy
Fountain, Kelly
Lopez-Paniagua, Dan
Hardesty, Lara
Brandt, Kathy
McDonald, Elizabeth S.
Rosen, Mark
Kontos, Despina
Abe, Hiroyuki
Sheth, Deepa
Crane, Erin P.
Dillis, Charlotte
Sheth, Pulin
Hovanessian-Larsen, Linda
Bang, Dae Hee
Porter, Bruce
Oh, Karen Y.
Jafarian, Neda
Tudorica, Alina
Niell, Bethany L.
Drukteinis, Jennifer
Newell, Mary S.
Cohen, Michael A.
Giurescu, Marina
Berman, Elise
Lehman, Constance
Partridge, Savannah C.
Fitzpatrick, Kimberly A.
Borders, Marisa H.
Yang, Wei T.
Dogan, Basak
Goudreau, Sally
Chenevert, Thomas
Yau, Christina
DeMichele, Angela
Berry, Don
Esserman, Laura J.
Hylton, Nola M.
author_sort Li, Wen
collection PubMed
description Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype.
format Online
Article
Text
id pubmed-7695723
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76957232020-11-30 Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL Li, Wen Newitt, David C. Gibbs, Jessica Wilmes, Lisa J. Jones, Ella F. Arasu, Vignesh A. Strand, Fredrik Onishi, Natsuko Nguyen, Alex Anh-Tu Kornak, John Joe, Bonnie N. Price, Elissa R. Ojeda-Fournier, Haydee Eghtedari, Mohammad Zamora, Kathryn W. Woodard, Stefanie A. Umphrey, Heidi Bernreuter, Wanda Nelson, Michael Church, An Ly Bolan, Patrick Kuritza, Theresa Ward, Kathleen Morley, Kevin Wolverton, Dulcy Fountain, Kelly Lopez-Paniagua, Dan Hardesty, Lara Brandt, Kathy McDonald, Elizabeth S. Rosen, Mark Kontos, Despina Abe, Hiroyuki Sheth, Deepa Crane, Erin P. Dillis, Charlotte Sheth, Pulin Hovanessian-Larsen, Linda Bang, Dae Hee Porter, Bruce Oh, Karen Y. Jafarian, Neda Tudorica, Alina Niell, Bethany L. Drukteinis, Jennifer Newell, Mary S. Cohen, Michael A. Giurescu, Marina Berman, Elise Lehman, Constance Partridge, Savannah C. Fitzpatrick, Kimberly A. Borders, Marisa H. Yang, Wei T. Dogan, Basak Goudreau, Sally Chenevert, Thomas Yau, Christina DeMichele, Angela Berry, Don Esserman, Laura J. Hylton, Nola M. NPJ Breast Cancer Article Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o) were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus 0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88 (95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46, 0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in prediction were more notable when analysis was conducted according to cancer subtype. Nature Publishing Group UK 2020-11-27 /pmc/articles/PMC7695723/ /pubmed/33298938 http://dx.doi.org/10.1038/s41523-020-00203-7 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Wen
Newitt, David C.
Gibbs, Jessica
Wilmes, Lisa J.
Jones, Ella F.
Arasu, Vignesh A.
Strand, Fredrik
Onishi, Natsuko
Nguyen, Alex Anh-Tu
Kornak, John
Joe, Bonnie N.
Price, Elissa R.
Ojeda-Fournier, Haydee
Eghtedari, Mohammad
Zamora, Kathryn W.
Woodard, Stefanie A.
Umphrey, Heidi
Bernreuter, Wanda
Nelson, Michael
Church, An Ly
Bolan, Patrick
Kuritza, Theresa
Ward, Kathleen
Morley, Kevin
Wolverton, Dulcy
Fountain, Kelly
Lopez-Paniagua, Dan
Hardesty, Lara
Brandt, Kathy
McDonald, Elizabeth S.
Rosen, Mark
Kontos, Despina
Abe, Hiroyuki
Sheth, Deepa
Crane, Erin P.
Dillis, Charlotte
Sheth, Pulin
Hovanessian-Larsen, Linda
Bang, Dae Hee
Porter, Bruce
Oh, Karen Y.
Jafarian, Neda
Tudorica, Alina
Niell, Bethany L.
Drukteinis, Jennifer
Newell, Mary S.
Cohen, Michael A.
Giurescu, Marina
Berman, Elise
Lehman, Constance
Partridge, Savannah C.
Fitzpatrick, Kimberly A.
Borders, Marisa H.
Yang, Wei T.
Dogan, Basak
Goudreau, Sally
Chenevert, Thomas
Yau, Christina
DeMichele, Angela
Berry, Don
Esserman, Laura J.
Hylton, Nola M.
Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
title Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
title_full Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
title_fullStr Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
title_full_unstemmed Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
title_short Predicting breast cancer response to neoadjuvant treatment using multi-feature MRI: results from the I-SPY 2 TRIAL
title_sort predicting breast cancer response to neoadjuvant treatment using multi-feature mri: results from the i-spy 2 trial
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7695723/
https://www.ncbi.nlm.nih.gov/pubmed/33298938
http://dx.doi.org/10.1038/s41523-020-00203-7
work_keys_str_mv AT liwen predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT newittdavidc predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT gibbsjessica predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT wilmeslisaj predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT jonesellaf predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT arasuvignesha predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT strandfredrik predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT onishinatsuko predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT nguyenalexanhtu predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT kornakjohn predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT joebonnien predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT priceelissar predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT ojedafournierhaydee predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT eghtedarimohammad predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT zamorakathrynw predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT woodardstefaniea predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT umphreyheidi predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT bernreuterwanda predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT nelsonmichael predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT churchanly predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT bolanpatrick predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT kuritzatheresa predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT wardkathleen predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT morleykevin predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT wolvertondulcy predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT fountainkelly predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT lopezpaniaguadan predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT hardestylara predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT brandtkathy predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT mcdonaldelizabeths predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT rosenmark predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT kontosdespina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT abehiroyuki predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT shethdeepa predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT craneerinp predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT dillischarlotte predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT shethpulin predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT hovanessianlarsenlinda predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT bangdaehee predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT porterbruce predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT ohkareny predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT jafarianneda predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT tudoricaalina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT niellbethanyl predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT drukteinisjennifer predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT newellmarys predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT cohenmichaela predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT giurescumarina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT bermanelise predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT lehmanconstance predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT partridgesavannahc predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT fitzpatrickkimberlya predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT bordersmarisah predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT yangweit predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT doganbasak predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT goudreausally predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT chenevertthomas predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT yauchristina predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT demicheleangela predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT berrydon predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT essermanlauraj predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial
AT hyltonnolam predictingbreastcancerresponsetoneoadjuvanttreatmentusingmultifeaturemriresultsfromtheispy2trial