Cargando…
SGDAN—A Spatio-Temporal Graph Dual-Attention Neural Network for Quantified Flight Delay Prediction
There has been a lot of research on flight delays. But it is more useful and difficult to estimate the departure delay time especially three hours before the scheduled time of departure, from which passengers can reasonably plan their travel time and the airline and airport staff can schedule flight...
Autores principales: | Guo, Ziyu, Mei, Guangxu, Liu, Shijun, Pan, Li, Bian, Lei, Tang, Hongwu, Wang, Diansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696102/ https://www.ncbi.nlm.nih.gov/pubmed/33187127 http://dx.doi.org/10.3390/s20226433 |
Ejemplares similares
-
Holistic Spatio-Temporal Graph Attention for Trajectory Prediction in Vehicle–Pedestrian Interactions
por: Alghodhaifi, Hesham, et al.
Publicado: (2023) -
Spatio-temporal graph data analytics
por: Gunturi, Venkata M V, et al.
Publicado: (2017) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
A Graph Neural Network with Spatio-Temporal Attention for Multi-Sources Time Series Data: An Application to Frost Forecast †
por: Lira, Hernan, et al.
Publicado: (2022) -
Moran’s I quantifies spatio-temporal pattern formation in neural imaging data
por: Schmal, Christoph, et al.
Publicado: (2017)