Cargando…
Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process
The Arburg Plastic Freeforming process (APF) is a unique additive manufacturing material jetting method. In APF, a thermoplastic material is supplied as pellets, melted and selectively deposited as droplets, enabling the use of commercial materials in their original shape instead of filaments. The m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696228/ https://www.ncbi.nlm.nih.gov/pubmed/33198390 http://dx.doi.org/10.3390/polym12112677 |
_version_ | 1783615362018836480 |
---|---|
author | Hentschel, Lukas Kynast, Frank Petersmann, Sandra Holzer, Clemens Gonzalez-Gutierrez, Joamin |
author_facet | Hentschel, Lukas Kynast, Frank Petersmann, Sandra Holzer, Clemens Gonzalez-Gutierrez, Joamin |
author_sort | Hentschel, Lukas |
collection | PubMed |
description | The Arburg Plastic Freeforming process (APF) is a unique additive manufacturing material jetting method. In APF, a thermoplastic material is supplied as pellets, melted and selectively deposited as droplets, enabling the use of commercial materials in their original shape instead of filaments. The medical industry could significantly benefit from the use of additive manufacturing for the onsite fabrication of customized medical aids and therapeutic devices in a fast and economical way. In the medical field, the utilized materials need to be certified for such applications and cannot be altered in any way to make them printable, because modifications annul the certification. Therefore, it is necessary to modify the processing conditions rather than the materials for successful printing. In this research, a medical-grade poly(methyl methacrylate) was analyzed. The deposition parameters were kept constant, while the drop aspect ratio, discharge rate, melt temperatures, and build chamber temperature were varied to obtain specimens with different geometrical accuracy. Once satisfactory geometrical accuracy was obtained, tensile properties of specimens printed individually or in batches of five were tested in two different orientations. It was found that parts printed individually with an XY orientation showed the highest tensile properties; however, there is still room for improvement by optimizing the processing conditions to maximize the mechanical strength of printed specimens. |
format | Online Article Text |
id | pubmed-7696228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76962282020-11-29 Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process Hentschel, Lukas Kynast, Frank Petersmann, Sandra Holzer, Clemens Gonzalez-Gutierrez, Joamin Polymers (Basel) Article The Arburg Plastic Freeforming process (APF) is a unique additive manufacturing material jetting method. In APF, a thermoplastic material is supplied as pellets, melted and selectively deposited as droplets, enabling the use of commercial materials in their original shape instead of filaments. The medical industry could significantly benefit from the use of additive manufacturing for the onsite fabrication of customized medical aids and therapeutic devices in a fast and economical way. In the medical field, the utilized materials need to be certified for such applications and cannot be altered in any way to make them printable, because modifications annul the certification. Therefore, it is necessary to modify the processing conditions rather than the materials for successful printing. In this research, a medical-grade poly(methyl methacrylate) was analyzed. The deposition parameters were kept constant, while the drop aspect ratio, discharge rate, melt temperatures, and build chamber temperature were varied to obtain specimens with different geometrical accuracy. Once satisfactory geometrical accuracy was obtained, tensile properties of specimens printed individually or in batches of five were tested in two different orientations. It was found that parts printed individually with an XY orientation showed the highest tensile properties; however, there is still room for improvement by optimizing the processing conditions to maximize the mechanical strength of printed specimens. MDPI 2020-11-12 /pmc/articles/PMC7696228/ /pubmed/33198390 http://dx.doi.org/10.3390/polym12112677 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hentschel, Lukas Kynast, Frank Petersmann, Sandra Holzer, Clemens Gonzalez-Gutierrez, Joamin Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process |
title | Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process |
title_full | Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process |
title_fullStr | Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process |
title_full_unstemmed | Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process |
title_short | Processing Conditions of a Medical Grade Poly(Methyl Methacrylate) with the Arburg Plastic Freeforming Additive Manufacturing Process |
title_sort | processing conditions of a medical grade poly(methyl methacrylate) with the arburg plastic freeforming additive manufacturing process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696228/ https://www.ncbi.nlm.nih.gov/pubmed/33198390 http://dx.doi.org/10.3390/polym12112677 |
work_keys_str_mv | AT hentschellukas processingconditionsofamedicalgradepolymethylmethacrylatewiththearburgplasticfreeformingadditivemanufacturingprocess AT kynastfrank processingconditionsofamedicalgradepolymethylmethacrylatewiththearburgplasticfreeformingadditivemanufacturingprocess AT petersmannsandra processingconditionsofamedicalgradepolymethylmethacrylatewiththearburgplasticfreeformingadditivemanufacturingprocess AT holzerclemens processingconditionsofamedicalgradepolymethylmethacrylatewiththearburgplasticfreeformingadditivemanufacturingprocess AT gonzalezgutierrezjoamin processingconditionsofamedicalgradepolymethylmethacrylatewiththearburgplasticfreeformingadditivemanufacturingprocess |