Cargando…
Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox
Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696260/ https://www.ncbi.nlm.nih.gov/pubmed/33182563 http://dx.doi.org/10.3390/antibiotics9110791 |
_version_ | 1783615369556000768 |
---|---|
author | Gu, Yufeng Wang, Shuge Huang, Lulu Sa, Wei Li, Jun Huang, Junhong Dai, Menghong Cheng, Guyue |
author_facet | Gu, Yufeng Wang, Shuge Huang, Lulu Sa, Wei Li, Jun Huang, Junhong Dai, Menghong Cheng, Guyue |
author_sort | Gu, Yufeng |
collection | PubMed |
description | Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76(-)4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations. |
format | Online Article Text |
id | pubmed-7696260 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76962602020-11-29 Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox Gu, Yufeng Wang, Shuge Huang, Lulu Sa, Wei Li, Jun Huang, Junhong Dai, Menghong Cheng, Guyue Antibiotics (Basel) Article Quinoxaline1,4-di-N-oxides (QdNOs) are a class of important antibacterial drugs of veterinary use, of which the drug resistance mechanism has not yet been clearly explained. This study investigated the molecular mechanism of development of resistance in Escherichia coli (E. coli) under the pressure of sub-inhibitory concentration (sub-MIC) of olaquindox (OLA), a representative QdNOs drug. In vitro challenge of E. coli with 1/100× MIC to 1/2× MIC of OLA showed that the bacteria needed a longer time to develop resistance and could only achieve low to moderate levels of resistance as well as form weak biofilms. The transcriptomic and genomic profiles of the resistant E. coli induced by sub-MIC of OLA demonstrated that genes involved in tricarboxylic acid cycle, oxidation-reduction process, biofilm formation, and efflux pumps were up-regulated, while genes involved in DNA repair and outer membrane porin were down-regulated. Mutation rates were significantly increased in the sub-MIC OLA-treated bacteria and the mutated genes were mainly involved in the oxidation-reduction process, DNA repair, and replication. The SNPs were found in degQ, ks71A, vgrG, bigA, cusA, and DR76(-)4702 genes, which were covered in both transcriptomic and genomic profiles. This study provides new insights into the resistance mechanism of QdNOs and increases the current data pertaining to the development of bacterial resistance under the stress of antibacterials at sub-MIC concentrations. MDPI 2020-11-10 /pmc/articles/PMC7696260/ /pubmed/33182563 http://dx.doi.org/10.3390/antibiotics9110791 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gu, Yufeng Wang, Shuge Huang, Lulu Sa, Wei Li, Jun Huang, Junhong Dai, Menghong Cheng, Guyue Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox |
title | Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox |
title_full | Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox |
title_fullStr | Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox |
title_full_unstemmed | Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox |
title_short | Development of Resistance in Escherichia coli ATCC25922 under Exposure of Sub-Inhibitory Concentration of Olaquindox |
title_sort | development of resistance in escherichia coli atcc25922 under exposure of sub-inhibitory concentration of olaquindox |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696260/ https://www.ncbi.nlm.nih.gov/pubmed/33182563 http://dx.doi.org/10.3390/antibiotics9110791 |
work_keys_str_mv | AT guyufeng developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT wangshuge developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT huanglulu developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT sawei developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT lijun developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT huangjunhong developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT daimenghong developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox AT chengguyue developmentofresistanceinescherichiacoliatcc25922underexposureofsubinhibitoryconcentrationofolaquindox |