Cargando…

Breast Cancer and Microcalcifications: An Osteoimmunological Disorder?

The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermo...

Descripción completa

Detalles Bibliográficos
Autores principales: Clemenceau, Alisson, Michou, Laetitia, Diorio, Caroline, Durocher, Francine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696282/
https://www.ncbi.nlm.nih.gov/pubmed/33203195
http://dx.doi.org/10.3390/ijms21228613
Descripción
Sumario:The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.