Cargando…
Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR
The distributed high temperature measurement of an optical fiber subjected to electric arc discharges based on optical frequency-domain reflectometry is experimentally demonstrated. The distributed temperature profile is attained in an open glow regime of a few milliamps with maximum detectable temp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696284/ https://www.ncbi.nlm.nih.gov/pubmed/33182580 http://dx.doi.org/10.3390/s20226407 |
_version_ | 1783615375138619392 |
---|---|
author | Chen, Chen Gao, Song Chen, Liang Bao, Xiaoyi |
author_facet | Chen, Chen Gao, Song Chen, Liang Bao, Xiaoyi |
author_sort | Chen, Chen |
collection | PubMed |
description | The distributed high temperature measurement of an optical fiber subjected to electric arc discharges based on optical frequency-domain reflectometry is experimentally demonstrated. The distributed temperature profile is attained in an open glow regime of a few milliamps with maximum detectable temperature up to 2100 ± 20 °C. The discharge arc-induced softened length of the fiber and mechanical stress are measured and statistically analyzed in terms of the correlation of the Rayleigh spectra. The large wavelength scanning range of OFDR enables much higher accuracy for the delay time measurement with a minimum measured delay of 40 fs. The delay shift over the entire heating range for a single discharge duration is statistically calculated by using a temporal correlation method. The reliability of the thermal sensitivity coefficient as 10 pm/°C for telecom single mode fiber (SMF, @1550 nm) is quantitatively analyzed and evaluated by the correlation coefficient. Lastly, a spectral mapping method is employed in spectrum monitoring for discharge dynamic impact on the optical path length (OPL) and local Rayleigh scatter. |
format | Online Article Text |
id | pubmed-7696284 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76962842020-11-29 Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR Chen, Chen Gao, Song Chen, Liang Bao, Xiaoyi Sensors (Basel) Article The distributed high temperature measurement of an optical fiber subjected to electric arc discharges based on optical frequency-domain reflectometry is experimentally demonstrated. The distributed temperature profile is attained in an open glow regime of a few milliamps with maximum detectable temperature up to 2100 ± 20 °C. The discharge arc-induced softened length of the fiber and mechanical stress are measured and statistically analyzed in terms of the correlation of the Rayleigh spectra. The large wavelength scanning range of OFDR enables much higher accuracy for the delay time measurement with a minimum measured delay of 40 fs. The delay shift over the entire heating range for a single discharge duration is statistically calculated by using a temporal correlation method. The reliability of the thermal sensitivity coefficient as 10 pm/°C for telecom single mode fiber (SMF, @1550 nm) is quantitatively analyzed and evaluated by the correlation coefficient. Lastly, a spectral mapping method is employed in spectrum monitoring for discharge dynamic impact on the optical path length (OPL) and local Rayleigh scatter. MDPI 2020-11-10 /pmc/articles/PMC7696284/ /pubmed/33182580 http://dx.doi.org/10.3390/s20226407 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Chen Gao, Song Chen, Liang Bao, Xiaoyi Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR |
title | Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR |
title_full | Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR |
title_fullStr | Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR |
title_full_unstemmed | Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR |
title_short | Distributed High Temperature Monitoring of SMF under Electrical Arc Discharges Based on OFDR |
title_sort | distributed high temperature monitoring of smf under electrical arc discharges based on ofdr |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696284/ https://www.ncbi.nlm.nih.gov/pubmed/33182580 http://dx.doi.org/10.3390/s20226407 |
work_keys_str_mv | AT chenchen distributedhightemperaturemonitoringofsmfunderelectricalarcdischargesbasedonofdr AT gaosong distributedhightemperaturemonitoringofsmfunderelectricalarcdischargesbasedonofdr AT chenliang distributedhightemperaturemonitoringofsmfunderelectricalarcdischargesbasedonofdr AT baoxiaoyi distributedhightemperaturemonitoringofsmfunderelectricalarcdischargesbasedonofdr |