Cargando…
Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing
3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696390/ https://www.ncbi.nlm.nih.gov/pubmed/33203194 http://dx.doi.org/10.3390/ma13225147 |
_version_ | 1783615392926662656 |
---|---|
author | Vespalec, Arnošt Novák, Josef Kohoutková, Alena Vosynek, Petr Podroužek, Jan Škaroupka, David Zikmund, Tomáš Kaiser, Josef Paloušek, David |
author_facet | Vespalec, Arnošt Novák, Josef Kohoutková, Alena Vosynek, Petr Podroužek, Jan Škaroupka, David Zikmund, Tomáš Kaiser, Josef Paloušek, David |
author_sort | Vespalec, Arnošt |
collection | PubMed |
description | 3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed to vary in relation to the time of concrete casting. The proposed experimental study investigated the behavior of a hardened concrete mixture containing coarse aggregates that were up to 8 mm in size, which is rather unusual for 3DCP technology. The resulting direct tensile strength at the layer interface was investigated for various time intervals of deposition from the initial mixing of concrete components. To better understand the material behavior at the layer interface area, computed tomography (CT) scanning was conducted, where the volumetric and area analysis enabled validation of the pore size and count distribution in accordance with the layer deposition process. The analyzed CT data related the macroscopic anisotropy and the resulting crack pattern to the temporal and spatial variability that is inherent to the additive manufacturing process at construction scales while providing additional insights into the porosity formation during the extrusion of the cementitious composite. The observed results contribute to previous investigations in this field by demonstrating the causal relationships, namely, how the interface strength development is determined by time, deposition process, and pore size distribution. Moreover, in regard to the printability of the proposed coarse aggregate mixture, the specific time interval is presented and its interplay with interface roughness and porosity is discussed. |
format | Online Article Text |
id | pubmed-7696390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76963902020-11-29 Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing Vespalec, Arnošt Novák, Josef Kohoutková, Alena Vosynek, Petr Podroužek, Jan Škaroupka, David Zikmund, Tomáš Kaiser, Josef Paloušek, David Materials (Basel) Article 3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed to vary in relation to the time of concrete casting. The proposed experimental study investigated the behavior of a hardened concrete mixture containing coarse aggregates that were up to 8 mm in size, which is rather unusual for 3DCP technology. The resulting direct tensile strength at the layer interface was investigated for various time intervals of deposition from the initial mixing of concrete components. To better understand the material behavior at the layer interface area, computed tomography (CT) scanning was conducted, where the volumetric and area analysis enabled validation of the pore size and count distribution in accordance with the layer deposition process. The analyzed CT data related the macroscopic anisotropy and the resulting crack pattern to the temporal and spatial variability that is inherent to the additive manufacturing process at construction scales while providing additional insights into the porosity formation during the extrusion of the cementitious composite. The observed results contribute to previous investigations in this field by demonstrating the causal relationships, namely, how the interface strength development is determined by time, deposition process, and pore size distribution. Moreover, in regard to the printability of the proposed coarse aggregate mixture, the specific time interval is presented and its interplay with interface roughness and porosity is discussed. MDPI 2020-11-15 /pmc/articles/PMC7696390/ /pubmed/33203194 http://dx.doi.org/10.3390/ma13225147 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Vespalec, Arnošt Novák, Josef Kohoutková, Alena Vosynek, Petr Podroužek, Jan Škaroupka, David Zikmund, Tomáš Kaiser, Josef Paloušek, David Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing |
title | Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing |
title_full | Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing |
title_fullStr | Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing |
title_full_unstemmed | Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing |
title_short | Interface Behavior and Interface Tensile Strength of a Hardened Concrete Mixture with a Coarse Aggregate for Additive Manufacturing |
title_sort | interface behavior and interface tensile strength of a hardened concrete mixture with a coarse aggregate for additive manufacturing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696390/ https://www.ncbi.nlm.nih.gov/pubmed/33203194 http://dx.doi.org/10.3390/ma13225147 |
work_keys_str_mv | AT vespalecarnost interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT novakjosef interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT kohoutkovaalena interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT vosynekpetr interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT podrouzekjan interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT skaroupkadavid interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT zikmundtomas interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT kaiserjosef interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing AT palousekdavid interfacebehaviorandinterfacetensilestrengthofahardenedconcretemixturewithacoarseaggregateforadditivemanufacturing |