Cargando…
An Accurate and Robust Method for Spike Sorting Based on Convolutional Neural Networks
In the fields of neuroscience and biomedical signal processing, spike sorting is a crucial step to extract the information of single neurons from extracellular recordings. In this paper, we propose a novel deep learning approach based on one-dimensional convolutional neural networks (1D-CNNs) to imp...
Autores principales: | Li, Zhaohui, Wang, Yongtian, Zhang, Nan, Li, Xiaoli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696441/ https://www.ncbi.nlm.nih.gov/pubmed/33187098 http://dx.doi.org/10.3390/brainsci10110835 |
Ejemplares similares
-
Neural encoding with unsupervised spiking convolutional neural network
por: Wang, Chong, et al.
Publicado: (2023) -
Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting
por: Werner, Thilo, et al.
Publicado: (2016) -
The geometry of robustness in spiking neural networks
por: Calaim, Nuno, et al.
Publicado: (2022) -
Improved space breakdown method – A robust clustering technique for spike sorting
por: Ardelean, Eugen-Richard, et al.
Publicado: (2023) -
A robust spike sorting method based on the joint optimization of linear discrimination analysis and density peaks
por: Zhang, Yiwei, et al.
Publicado: (2022)