Cargando…

Effect of Non-Concentrated and Concentrated Vaporized Hydrogen Peroxide on Scrapie Prions

To date, there have been no studies on the sterilization of prions by non-concentrated and concentrated vaporized hydrogen peroxide (VHP) applied by the same instrument. Here, the effect of the two types of VHP applied using an ES-700 sterilizer on prions was investigated. Brain homogenate from scra...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakudo, Akikazu, Yamashiro, Risa, Harata, Chihiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696461/
https://www.ncbi.nlm.nih.gov/pubmed/33202870
http://dx.doi.org/10.3390/pathogens9110947
Descripción
Sumario:To date, there have been no studies on the sterilization of prions by non-concentrated and concentrated vaporized hydrogen peroxide (VHP) applied by the same instrument. Here, the effect of the two types of VHP applied using an ES-700 sterilizer on prions was investigated. Brain homogenate from scrapie (Chandler) prion-infected mice was spotted on a cover glass and subjected to ES-700 treatment in soft (non-concentrated VHP from 59% hydrogen peroxide) or standard (concentrated VHP from 80% hydrogen peroxide) mode. Proteinase K-resistant prion protein (PrPres), an indicator of the abnormal isoform of prion protein (PrP(Sc)), was reduced by ES-700 treatment under several conditions: SFT1/4 (soft mode, quarter cycle), SFT1/2 (soft mode, half cycle), SFT1 (soft mode, full cycle), and STD1/2 (standard mode, half cycle). PrPres was detected after the first and second rounds of protein misfolding cyclic amplification (PMCA) of untreated samples, but was undetectable in SFT1/4, SFT1/2, SFT1, and STD1/2 treated samples. In a mouse bioassay, SFT1/2 and STD1/2 treatment of prions significantly prolonged survival time, suggesting that prion infectivity is reduced after ES-700 treatment. In summary, both non-concentrated and concentrated VHP inactivate prions and may be useful for the low-temperature sterilization of prion-contaminated medical devices.