Cargando…
Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization
A novel method for recognizing the phases in bicycling of lower limb amputees using support vector machine (SVM) optimized by particle swarm optimization (PSO) is proposed in this paper. The method is essential for enhanced prosthetic knee joint control for lower limb amputees in carrying out bicycl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696493/ https://www.ncbi.nlm.nih.gov/pubmed/33203169 http://dx.doi.org/10.3390/s20226533 |
_version_ | 1783615417123602432 |
---|---|
author | Li, Xinxin Liu, Zuojun Gao, Xinzhi Zhang, Jie |
author_facet | Li, Xinxin Liu, Zuojun Gao, Xinzhi Zhang, Jie |
author_sort | Li, Xinxin |
collection | PubMed |
description | A novel method for recognizing the phases in bicycling of lower limb amputees using support vector machine (SVM) optimized by particle swarm optimization (PSO) is proposed in this paper. The method is essential for enhanced prosthetic knee joint control for lower limb amputees in carrying out bicycling activity. Some wireless wearable accelerometers and a knee joint angle sensor are installed in the prosthesis to obtain data on the knee joint and ankle joint horizontal, vertical acceleration signal and knee joint angle. In order to overcome the problem of high noise content in the collected data, a soft-hard threshold filter was used to remove the noise caused by the vibration. The filtered information is then used to extract the multi-dimensional feature vector for the training of SVM for performing bicycling phase recognition. The SVM is optimized by PSO to enhance its classification accuracy. The recognition accuracy of the PSO-SVM classification model on testing data is 93%, which is much higher than those of BP, SVM and PSO-BP classification models. |
format | Online Article Text |
id | pubmed-7696493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76964932020-11-29 Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization Li, Xinxin Liu, Zuojun Gao, Xinzhi Zhang, Jie Sensors (Basel) Article A novel method for recognizing the phases in bicycling of lower limb amputees using support vector machine (SVM) optimized by particle swarm optimization (PSO) is proposed in this paper. The method is essential for enhanced prosthetic knee joint control for lower limb amputees in carrying out bicycling activity. Some wireless wearable accelerometers and a knee joint angle sensor are installed in the prosthesis to obtain data on the knee joint and ankle joint horizontal, vertical acceleration signal and knee joint angle. In order to overcome the problem of high noise content in the collected data, a soft-hard threshold filter was used to remove the noise caused by the vibration. The filtered information is then used to extract the multi-dimensional feature vector for the training of SVM for performing bicycling phase recognition. The SVM is optimized by PSO to enhance its classification accuracy. The recognition accuracy of the PSO-SVM classification model on testing data is 93%, which is much higher than those of BP, SVM and PSO-BP classification models. MDPI 2020-11-15 /pmc/articles/PMC7696493/ /pubmed/33203169 http://dx.doi.org/10.3390/s20226533 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Xinxin Liu, Zuojun Gao, Xinzhi Zhang, Jie Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization |
title | Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization |
title_full | Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization |
title_fullStr | Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization |
title_full_unstemmed | Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization |
title_short | Bicycling Phase Recognition for Lower Limb Amputees Using Support Vector Machine Optimized by Particle Swarm Optimization |
title_sort | bicycling phase recognition for lower limb amputees using support vector machine optimized by particle swarm optimization |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696493/ https://www.ncbi.nlm.nih.gov/pubmed/33203169 http://dx.doi.org/10.3390/s20226533 |
work_keys_str_mv | AT lixinxin bicyclingphaserecognitionforlowerlimbamputeesusingsupportvectormachineoptimizedbyparticleswarmoptimization AT liuzuojun bicyclingphaserecognitionforlowerlimbamputeesusingsupportvectormachineoptimizedbyparticleswarmoptimization AT gaoxinzhi bicyclingphaserecognitionforlowerlimbamputeesusingsupportvectormachineoptimizedbyparticleswarmoptimization AT zhangjie bicyclingphaserecognitionforlowerlimbamputeesusingsupportvectormachineoptimizedbyparticleswarmoptimization |