Cargando…

Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model

Multidrug-resistant (MDR) Acinetobacter baumannii is a critical threat to human health globally. We constructed a genome-scale metabolic model iAB5075 for the hypervirulent, MDR A. baumannii strain AB5075. Predictions of nutrient utilization and gene essentiality were validated using Biolog assay an...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jinxin, Zhu, Yan, Han, Jiru, Lin, Yu-Wei, Aichem, Michael, Wang, Jiping, Chen, Ke, Velkov, Tony, Schreiber, Falk, Li, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696501/
https://www.ncbi.nlm.nih.gov/pubmed/33207684
http://dx.doi.org/10.3390/microorganisms8111793
_version_ 1783615418992164864
author Zhao, Jinxin
Zhu, Yan
Han, Jiru
Lin, Yu-Wei
Aichem, Michael
Wang, Jiping
Chen, Ke
Velkov, Tony
Schreiber, Falk
Li, Jian
author_facet Zhao, Jinxin
Zhu, Yan
Han, Jiru
Lin, Yu-Wei
Aichem, Michael
Wang, Jiping
Chen, Ke
Velkov, Tony
Schreiber, Falk
Li, Jian
author_sort Zhao, Jinxin
collection PubMed
description Multidrug-resistant (MDR) Acinetobacter baumannii is a critical threat to human health globally. We constructed a genome-scale metabolic model iAB5075 for the hypervirulent, MDR A. baumannii strain AB5075. Predictions of nutrient utilization and gene essentiality were validated using Biolog assay and a transposon mutant library. In vivo transcriptomics data were integrated with iAB5075 to elucidate bacterial metabolic responses to the host environment. iAB5075 contains 1530 metabolites, 2229 reactions, and 1015 genes, and demonstrated high accuracies in predicting nutrient utilization and gene essentiality. At 4 h post-infection, a total of 146 metabolic fluxes were increased and 52 were decreased compared to 2 h post-infection; these included enhanced fluxes through peptidoglycan and lipopolysaccharide biosynthesis, tricarboxylic cycle, gluconeogenesis, nucleotide and fatty acid biosynthesis, and altered fluxes in amino acid metabolism. These flux changes indicate that the induced central metabolism, energy production, and cell membrane biogenesis played key roles in establishing and enhancing A. baumannii bloodstream infection. This study is the first to employ genome-scale metabolic modeling to investigate A. baumannii infection in vivo. Our findings provide important mechanistic insights into the adaption of A. baumannii to the host environment and thus will contribute to the development of new therapeutic agents against this problematic pathogen.
format Online
Article
Text
id pubmed-7696501
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76965012020-11-29 Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model Zhao, Jinxin Zhu, Yan Han, Jiru Lin, Yu-Wei Aichem, Michael Wang, Jiping Chen, Ke Velkov, Tony Schreiber, Falk Li, Jian Microorganisms Article Multidrug-resistant (MDR) Acinetobacter baumannii is a critical threat to human health globally. We constructed a genome-scale metabolic model iAB5075 for the hypervirulent, MDR A. baumannii strain AB5075. Predictions of nutrient utilization and gene essentiality were validated using Biolog assay and a transposon mutant library. In vivo transcriptomics data were integrated with iAB5075 to elucidate bacterial metabolic responses to the host environment. iAB5075 contains 1530 metabolites, 2229 reactions, and 1015 genes, and demonstrated high accuracies in predicting nutrient utilization and gene essentiality. At 4 h post-infection, a total of 146 metabolic fluxes were increased and 52 were decreased compared to 2 h post-infection; these included enhanced fluxes through peptidoglycan and lipopolysaccharide biosynthesis, tricarboxylic cycle, gluconeogenesis, nucleotide and fatty acid biosynthesis, and altered fluxes in amino acid metabolism. These flux changes indicate that the induced central metabolism, energy production, and cell membrane biogenesis played key roles in establishing and enhancing A. baumannii bloodstream infection. This study is the first to employ genome-scale metabolic modeling to investigate A. baumannii infection in vivo. Our findings provide important mechanistic insights into the adaption of A. baumannii to the host environment and thus will contribute to the development of new therapeutic agents against this problematic pathogen. MDPI 2020-11-16 /pmc/articles/PMC7696501/ /pubmed/33207684 http://dx.doi.org/10.3390/microorganisms8111793 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Jinxin
Zhu, Yan
Han, Jiru
Lin, Yu-Wei
Aichem, Michael
Wang, Jiping
Chen, Ke
Velkov, Tony
Schreiber, Falk
Li, Jian
Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
title Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
title_full Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
title_fullStr Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
title_full_unstemmed Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
title_short Genome-Scale Metabolic Modeling Reveals Metabolic Alterations of Multidrug-Resistant Acinetobacter baumannii in a Murine Bloodstream Infection Model
title_sort genome-scale metabolic modeling reveals metabolic alterations of multidrug-resistant acinetobacter baumannii in a murine bloodstream infection model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696501/
https://www.ncbi.nlm.nih.gov/pubmed/33207684
http://dx.doi.org/10.3390/microorganisms8111793
work_keys_str_mv AT zhaojinxin genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT zhuyan genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT hanjiru genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT linyuwei genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT aichemmichael genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT wangjiping genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT chenke genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT velkovtony genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT schreiberfalk genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel
AT lijian genomescalemetabolicmodelingrevealsmetabolicalterationsofmultidrugresistantacinetobacterbaumanniiinamurinebloodstreaminfectionmodel