Cargando…
TCox: Correlation-Based Regularization Applied to Colorectal Cancer Survival Data
Colorectal cancer (CRC) is one of the leading causes of mortality and morbidity in the world. Being a heterogeneous disease, cancer therapy and prognosis represent a significant challenge to medical care. The molecular information improves the accuracy with which patients are classified and treated...
Autores principales: | Peixoto, Carolina, Lopes, Marta B., Martins, Marta, Costa, Luís, Vinga, Susana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696515/ https://www.ncbi.nlm.nih.gov/pubmed/33182598 http://dx.doi.org/10.3390/biomedicines8110488 |
Ejemplares similares
-
Kidney Cancer Biomarker Selection Using Regularized Survival Models
por: Peixoto, Carolina, et al.
Publicado: (2022) -
Twiner: correlation-based regularization for identifying common cancer gene signatures
por: Lopes, Marta B., et al.
Publicado: (2019) -
Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data
por: Lopes, Marta B., et al.
Publicado: (2020) -
Identification of biomarkers predictive of metastasis development in early-stage colorectal cancer using network-based regularization
por: Peixoto, Carolina, et al.
Publicado: (2023) -
DegreeCox – a network-based regularization method for survival analysis
por: Veríssimo, André, et al.
Publicado: (2016)