Cargando…
Effects of Incubation of Human Brain Microvascular Endothelial Cells and Astrocytes with Pyridostigmine Bromide, DEET, or Permethrin in the Absence or Presence of Metal Salts
Gulf War Illness (GWI) is a chronic, multi-symptom illness suffered by over one-third of American military veterans who served in the Persian Gulf War between 1990 and 1991. No current single-exposure scenario accounts for all the symptoms observed in GWI, and instead may be due to a multi-exposure...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696739/ https://www.ncbi.nlm.nih.gov/pubmed/33187257 http://dx.doi.org/10.3390/ijerph17228336 |
Sumario: | Gulf War Illness (GWI) is a chronic, multi-symptom illness suffered by over one-third of American military veterans who served in the Persian Gulf War between 1990 and 1991. No current single-exposure scenario accounts for all the symptoms observed in GWI, and instead may be due to a multi-exposure scenario. As a larger effort to understand how one category of multi-exposure scenarios of organic compounds such as nerve gas prophylactic pyridostigmine bromide, or insecticides/pesticides such as N,N-diethyl-m-toluamide (DEET) and permethrin, plus heavy metals found in inhaled dust particles (Al, Fe, Ni, Sr, DU, Co, Cu, Mn, and Zn) might play a role in neural aspects of GWI, we begin this initial study to examine the toxicity and oxidative damage markers of human brain endothelial cell and human astrocyte cell cultures in response to these compounds. A battery of cytotoxicity assessments, including the MTT assay, Neutral Red uptake, and direct microscopic observation, was used to determine a non-toxic dose of the test compounds. After testing a wide range of doses of each compound, we chose a sub-toxic dose of 10 µM for the three organic compounds and 1 µM for the nine metals of interest for co-exposure experiments on cell cultures and examined an array of oxidative stress-response markers including nitric oxide production, formation of protein carbonyls, production of thiobarbituric acid-reactive substances, and expression of proteins involved in oxidative stress and cell damage. Many markers were not significantly altered, but we report a significant increase in nitric oxide after exposure to any of the three compounds in conjunction with depleted uranium. |
---|