Cargando…

Demonstration of Three-Dimensional Indoor Visible Light Positioning with Multiple Photodiodes and Reinforcement Learning

To provide high-quality location-based services in the era of the Internet of Things, visible light positioning (VLP) is considered a promising technology for indoor positioning. In this paper, we study a multi-photodiodes (multi-PDs) three-dimensional (3D) indoor VLP system enhanced by reinforcemen...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Zhuo, Chen, Huayang, Zeng, Weikang, Cao, Xinlong, Hong, Xuezhi, Chen, Jiajia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696747/
https://www.ncbi.nlm.nih.gov/pubmed/33198393
http://dx.doi.org/10.3390/s20226470
Descripción
Sumario:To provide high-quality location-based services in the era of the Internet of Things, visible light positioning (VLP) is considered a promising technology for indoor positioning. In this paper, we study a multi-photodiodes (multi-PDs) three-dimensional (3D) indoor VLP system enhanced by reinforcement learning (RL), which can realize accurate positioning in the 3D space without any off-line training. The basic 3D positioning model is introduced, where without height information of the receiver, the initial height value is first estimated by exploring its relationship with the received signal strength (RSS), and then, the coordinates of the other two dimensions (i.e., X and Y in the horizontal plane) are calculated via trilateration based on the RSS. Two different RL processes, namely RL(1) and RL(2), are devised to form two methods that further improve horizontal and vertical positioning accuracy, respectively. A combination of RL(1) and RL(2) as the third proposed method enhances the overall 3D positioning accuracy. The positioning performance of the four presented 3D positioning methods, including the basic model without RL (i.e., Benchmark) and three RL based methods that run on top of the basic model, is evaluated experimentally. Experimental results verify that obviously higher 3D positioning accuracy is achieved by implementing any proposed RL based methods compared with the benchmark. The best performance is obtained when using the third RL based method that runs RL(2) and RL(1) sequentially. For the testbed that emulates a typical office environment with a height difference between the receiver and the transmitter ranging from 140 cm to 200 cm, an average 3D positioning error of 2.6 cm is reached by the best RL method, demonstrating at least 20% improvement compared to the basic model without performing RL.