Cargando…
Interpopulational Variations of Odorant-Binding Protein Expression in the Black Cutworm Moth, Agrotis ipsilon
SIMPLE SUMMARY: Odorant-binding proteins (OBPs) are small soluble transporter proteins that are believed to play a key role in insect olfaction. However, there is an emerging set of data that shows a role in insecticide resistance for similar families of binding proteins. The black cutworm Agrotis i...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696954/ https://www.ncbi.nlm.nih.gov/pubmed/33202803 http://dx.doi.org/10.3390/insects11110798 |
Sumario: | SIMPLE SUMMARY: Odorant-binding proteins (OBPs) are small soluble transporter proteins that are believed to play a key role in insect olfaction. However, there is an emerging set of data that shows a role in insecticide resistance for similar families of binding proteins. The black cutworm Agrotis ipsilon is a migrant species of moth known to feed on multiple types of crops (polyphagous) worldwide. It is therefore likely that the olfactory system of this species can be modulated to adapt to different environments. We compared gene expression between American and European continental populations of the moth. We found continental-specific expression of antennal binding protein X (ABPX) and general odorant-binding protein 2 (GOBP2), suggesting a function of these proteins in migration, environment recognition, crop change and adaptation that are required for a polyphagous species such as A. ipsilon. ABSTRACT: A long-range migrant species of moth (Agrotis ipsilon) has served as a model to compare the expression profiles of antennal proteins between different continental populations. Our results showed that the American and French populations of the black cutworm moth, A. ipsilon, expressed the same odorant-binding proteins (OBPs), but apparently in different levels. Electrophoretic analysis of antennal protein profiles and reverse transcription polymerase chain reaction using RNA as a template showed significant differences between the two populations in the expression of antennal binding protein-X (ABPX) and general odorant-binding protein-2 (GOBP2). However, the two A. ipsilon populations showed no differences in RNA levels coding for pheromone binding proteins (PBPs), suggesting that the expression of generalist OBPs is population-specific and could be affected by specific odor and/or chemical changes in external environmental conditions. To support the role of ABPX and GOBP2 with expression, the role of ABPX and GOBP2 is discussed in regard to odor detection, memorization and/or degradation of toxic chemical insecticides. |
---|